SUPPLEMENTARY INFORMATION

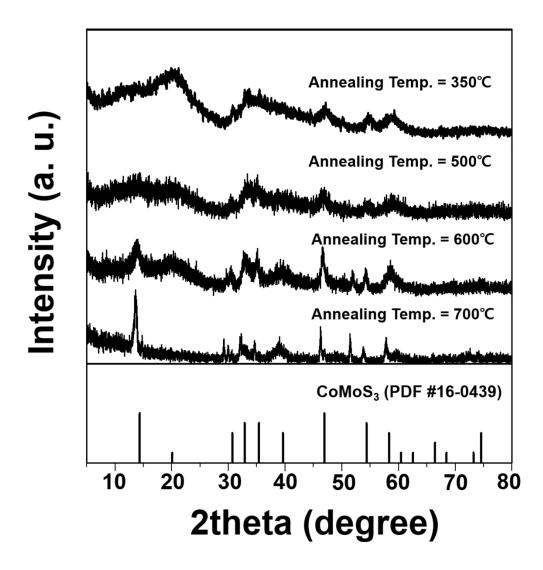
A MOF-Mediated Strategy for Constructing Human Backbonelike $CoMoS_3@N$ -doped Carbon Nanostructures with Multiple Voids as a Superior Anode for Sodium-Ion Batteries

Su Hyun Yang, †a Seung-Keun Park, †b Jin Koo Kim, a and Yun Chan Kang*a

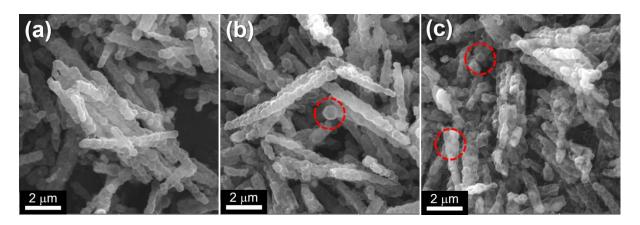
^a Department of Materials Science and Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, Republic of Korea. E-mail: yckang@korea.ac.kr

^b Department of Chemical Engineering, Kongju National University, 1223-24 Cheonandaero, Seobuk-gu, Cheonan 31080, Republic of Korea

[†] These authors contributed equally to this work.


Characterization

The morphologies and structures of specimen were investigated by microscopic characterization techniques, including scanning electron microscopy (SEM, VEGA3 SBH), and field-emission transmission electron microscopy (FE-TEM, JEM-2100 F). The crystallographic phases of the samples were confirmed through powder X-ray diffraction (XRD, X'Pert PRO), with Cu– K_{α} radiation ($\lambda = 1.5418 \text{ Å}$) at the Korea Basic Science Institute (Daegu). Pyris 1 thermogravimetric (TGA) analyzer (Perkin Elmer) was used to confirm the carbon content in the samples, within the temperature range of 30–700 °C, at a ramp rate of 10 °C min⁻ ¹, in air. Pore size distributions and surface areas of the samples were calculated using the Brunauer-Emmett-Teller (BET) method, with pure N₂ as the adsorbate gas. X-ray photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha) was adopted for characterizing the chemical nature of the samples, and Raman spectroscopy (Jobin Yvon LabRamHR800, excited by a 632.8 nm He/Ne laser) was performed to examine the structure of the carbon in the samples. The Carbon contents of the sample were analyzed elemental analyzer (EA; vario MICRO cube and Cobalt, Molybdenum, and sulfur contents were investigated using the inductively coupled plasma optical emission spectroscopy (ICP-OES; Optima 8300 DV, Perkin Elmer) at the Korea Institute of Ceramic Engineering and Technology (KICET, Jinju).


Electrochemical Measurements

Electrochemical measurement of the CoMoS₃@NC, CoMoS₃ nanobackbones, MoS₂ tubes, and H-CoS₂ polyhedrons was performed by using standard 2032-type coin half cells. Sodiumion battery (SIB) anodes were prepared by casting a slurry which included the active material, Super P, and sodium carboxymethylcellulose (weight ratio of 7:2:1, respectively) into DI water, and the mix was then applied onto copper foil, using a doctor blade. All cells were assembled in a glove box, and the coin cell consisted of Na metal as the counter-electrode, porous

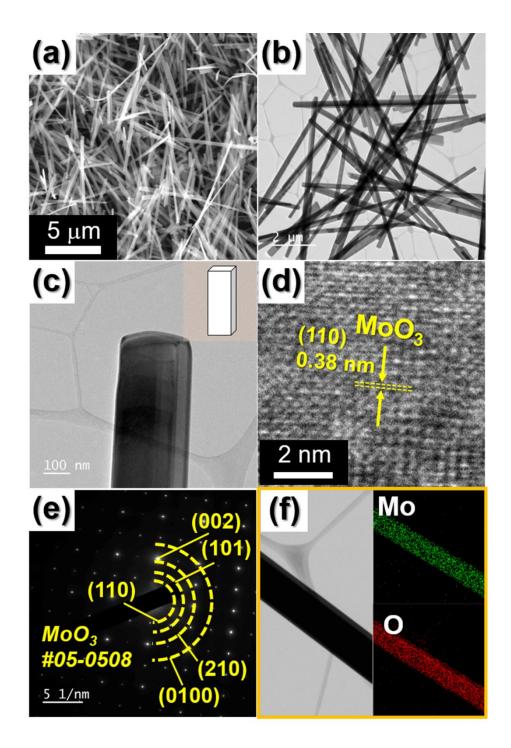

polypropylene as the separator, and 1 M NaClO₄ (dissolved in a mixture of ethylene carbonate (EC)/dimethyl carbonate (DMC) at a volumetric ratio of 1:1, with addition of 5 wt% fluoroethylene carbonate (FEC)) as the electrolyte. The charge/discharge characteristics and cyclic voltammetry (CV) measurements were performed using a battery analyzer (WonATech, WBCS-3000s cycler) over the potential range of 0.001–3.0 V at various current densities. The diameter of the electrode was 14 mm, and its mass loading was approximately 1.4 mg cm⁻². Electrochemical impendence spectroscopy (EIS) analyses were obtained, through the frequency ranges of 0.01–100 kHz.

Fig. S1 XRD patterns of the CoMoS $_3$ @NC annealed at temperatures of 350, 500, 600, and 700°C.

Fig. S2 Morphologies of $CoMoS_3@NC$ annealed at temperatures of (a) 500, (b) 600, and (c) 700°C.

Fig. S3 Morphologies, SAED pattern, and elemental mapping images of MoO₃ nanobelt: (a) SEM image, (b,c) TEM images, (d) HR-TEM image, (e) SAED pattern, and (f) elemental mapping images.

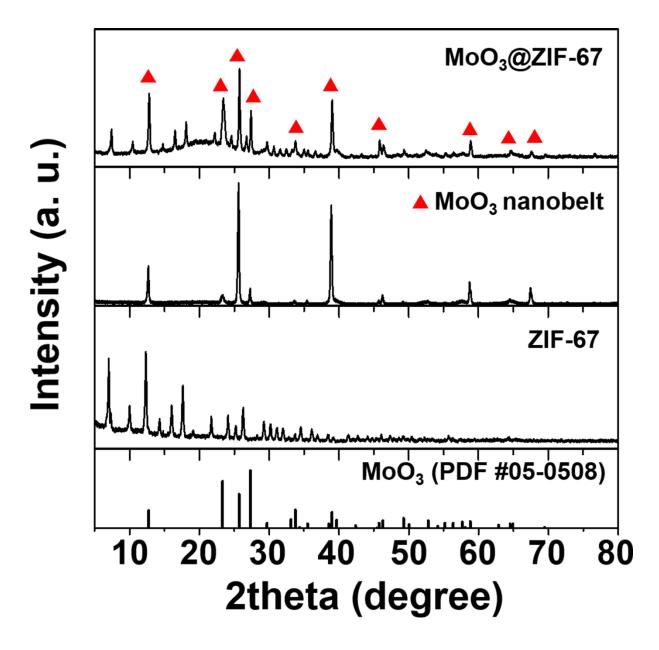


Fig. S4 XRD patterns of the MoO₃@ ZIF-67, MoO₃ nanobelt, and ZIF-67.

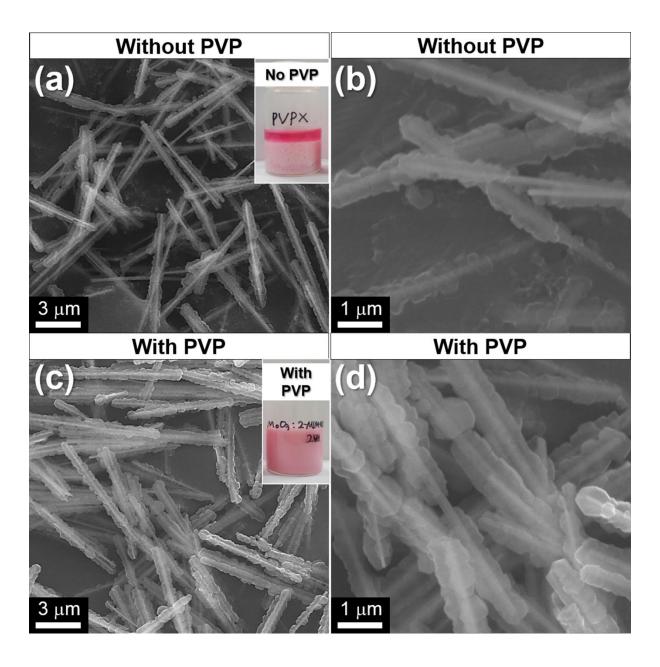


Fig. S5 Morphologies of MoO₃@ZIF-67 (a,b) without and (c,d) with PVP.

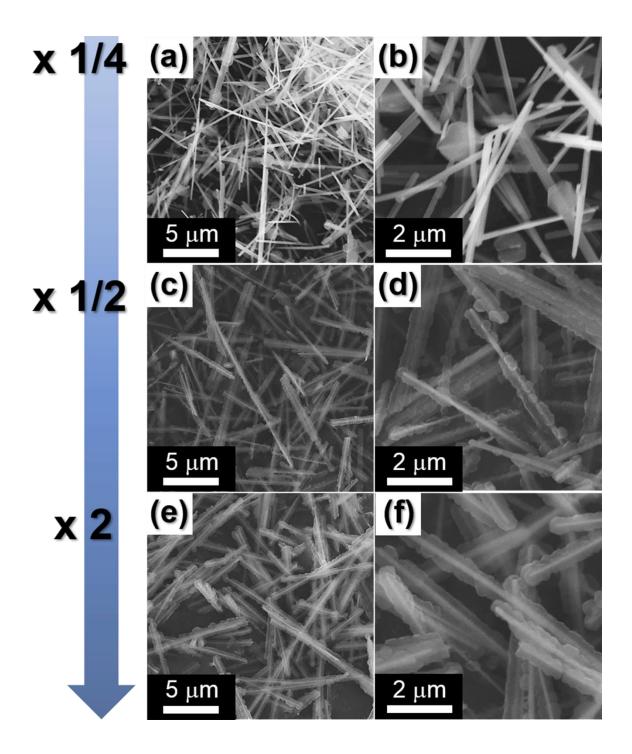
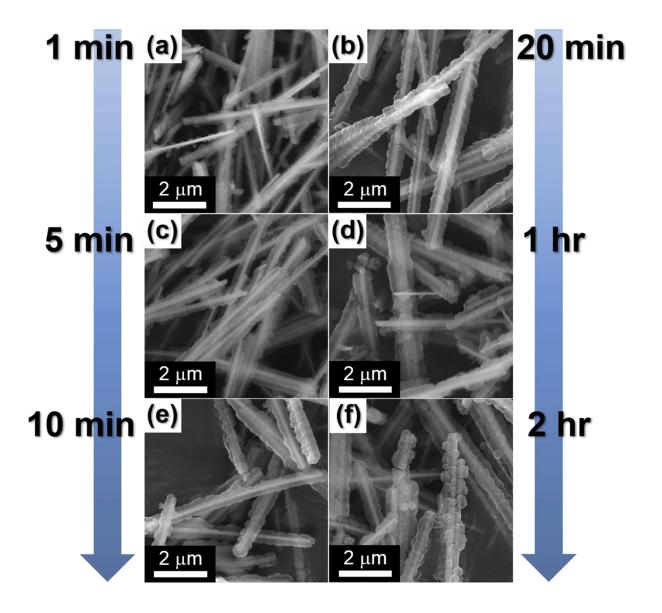



Fig. S6. Morphologies of MoO₃@ ZIF-67 formed from different amount of 2-MIM.

Fig. S7 Morphologies of MoO₃@ZIF-67 formed with different reaction times for ZIF-67 coating.

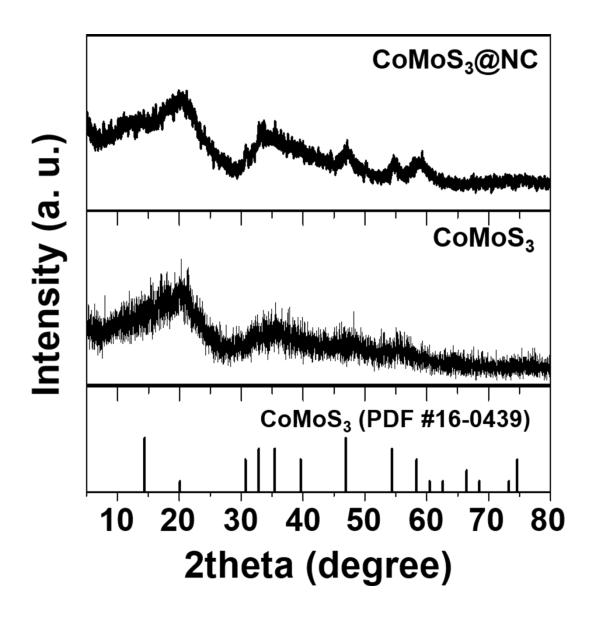
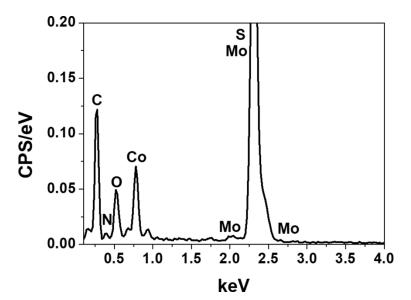
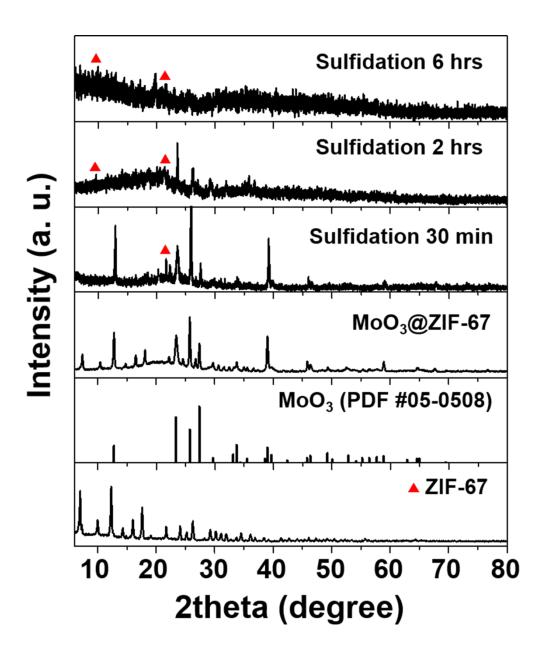
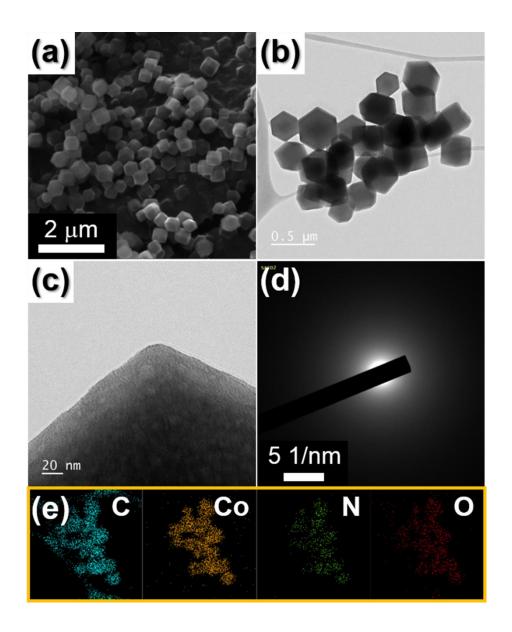
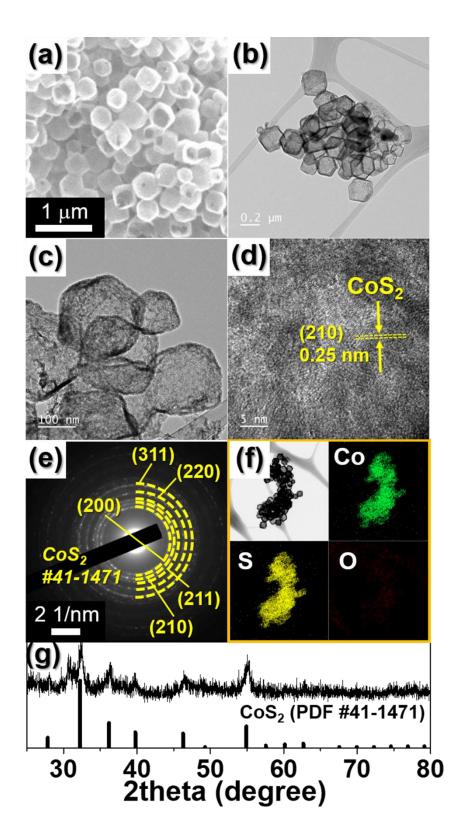



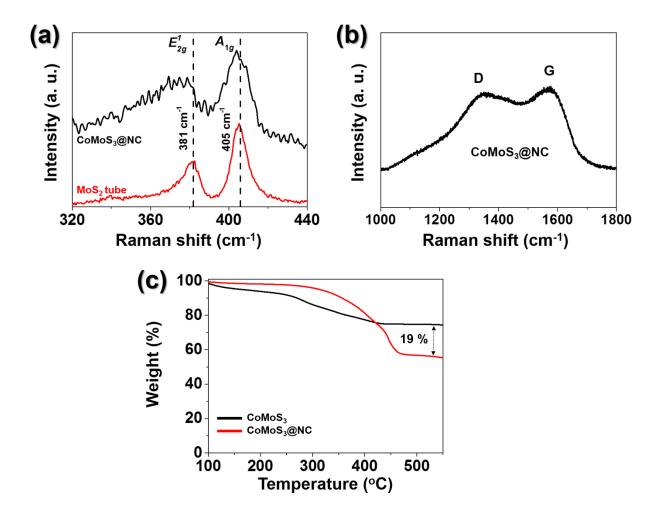
Fig. S8 XRD patterns of CoMoS₃@NC and CoMoS₃.

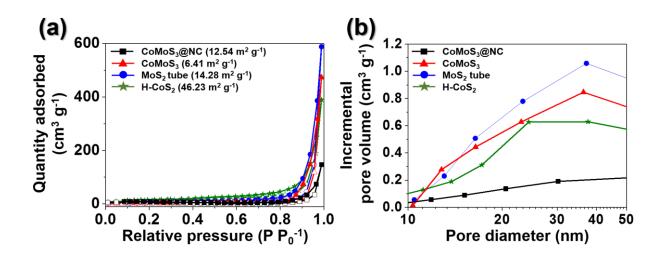
CoMoS ₃ @NC Nanobackbone							
Element	wt%	at%					
C	24.1	51.3					
S	32.9	26.4					
N	0	0					
О	5.9	9.5					
Со	17.9	7.7					
Мо	19.2	5.1					
Total	100	100					

Fig. S9 EDX measurement of $CoMoS_3@NC$.


Fig. S10 XRD patterns of MoO₃@ZIF-67 obtained at various sulfidation times.


Fig. S11 Morphologies, SAED pattern, and elemental mapping images, XRD pattern of MoS₂ tube: (a) SEM image, (b,c) TEM images, (d) HR-TEM image, (e) SAED pattern, (f) elemental mapping images, and (g) XRD pattern.


Fig. S12 Morphologies, SAED pattern, and elemental mapping images of ZIF-67: (a) SEM image, (b,c) TEM images, (d) SAED pattern, and (e) elemental mapping images.

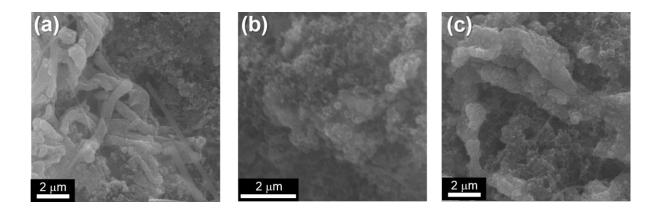

Fig. S13 Morphologies, SAED pattern, elemental mapping images, and XRD pattern of H-CoS₂: (a) SEM image, (b,c) TEM images, (d) HR-TEM image, (e) SAED pattern, (f) elemental mapping images, and (g) XRD pattern.

Fig. S14 (a) Raman spectra of $CoMoS_3@NC$ and MoS_2 tube, (b) Raman spectra of $CoMoS_3@NC$, and (c) TGA curves of the $CoMoS_3@NC$ and $CoMoS_3$.

Fig. S15 (a) N₂ adsorption and desorption isotherms and (b) BJH pore size distributions of CoMoS₃@NC, CoMoS₃, MoS₂ tube, and H-CoS₂.

 $\textbf{Fig. S16} \ Morphologies \ of \ (a) \ MoS_2 \ tubes, \ (b) \ H-CoS_2, \ and \ (c) \ CoMoS_3 \ after \ 100 cycle.$

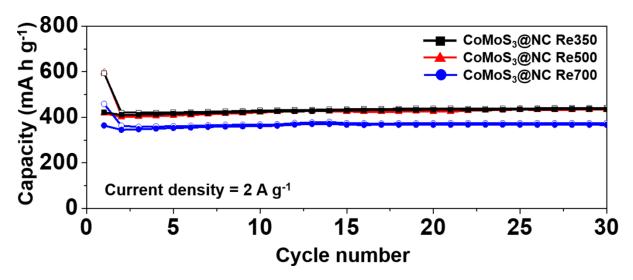
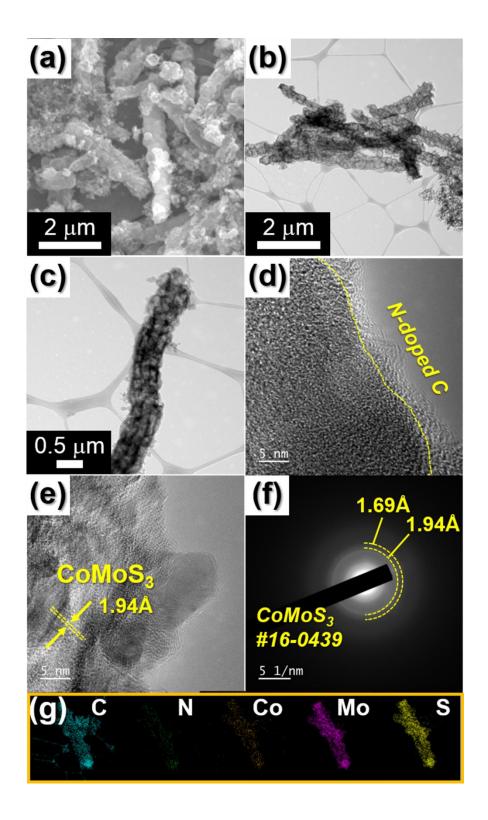



Fig. S17 Cycle performances of $CoMoS_3@NC$ formed at different annealing temperatures at a current density of 2 A g^{-1} .

Fig. S18 Morphologies, SAED pattern, elemental mapping images of CoMoS₃@NC after 100cycle: (a) SEM image, (b,c) TEM images, (d-e) HR-TEM images, (f) SAED pattern, and (g) elemental mapping images.

Fig. S19 Randle-type equivalent circuit model used for EIS fitting.

 R_e : Electrolyte resistance, corresponding to the intercept of high frequency semicircle at Z_{re} axis

R_f: SEI layer resistance corresponding to the high-frequency semicircle

Q₁: Dielectric relaxation capacitance corresponding to the high-frequency semicircle

R_{ct}: Charge transfer resistance related to the middle-frequency semicircle

Q₂: Associated double-layer capacitance related to the middle-frequency semicircle

Z_w: Na-ion diffusion resistance

Table S1. C, H, O, and N contents in $CoMoS_3@NC$ composite measured by EA analysis.

CoMoS ₃ @NC composite							
Element	wt%	at%					
С	14.1	24.9					
Н	2.5	53.2					
0	13.9	18.5					
N	2.3	3.4					

Table S2. Electrochemical properties of various Co-, Mo-, and CoMo sulfides materials applied as sodium-ion batteries reported in the previous literatures.

Material	Voltage range(V)	Current rate [mA g ⁻¹]	Discharge capacity [mA h g ⁻¹]	Cycle number	Initial Coulombic efficiency [%]	Capacity retention [%, from the 2 nd cycle]	Rate capacity [mA h g ⁻¹]	Loading mass of active material	Ref.
CoMoS ₃ @NC	0.001-3	500	478	200	77.7	83	349 (10.0 A g ⁻¹)	1.4 mg	Our work
CoS ₂ /red uced graphene oxide	0.01-3	100	367	100	67	80	297 (1.0 A g ⁻¹)	1-1.2 mg	[S1]
MoS ₂ nanoshee ts	0.01-3	40	386	100	~41	~57	251 (0.3 A g ⁻¹)	1.2 mg	[S2]
MoS ₂ /Co ₉ S ₈ /C	0.01-3	500	546	100	85	~79	222 (10 A g ⁻¹)	1.3-1.8 mg	[S3]
MoS ₂ @C nanotube composit es	0.01-3	250	480	200	-	86	370 (2.5 A g ⁻¹)	1 mg	[S4]
Co ₉ S ₈ /M oS ₂ yolk shell	0.01-3	300	476	100	50	90	403 (2.0 A g ⁻¹)	-	[S5]
Yolk- shell SnS- MoS ₂	0.001-2.5	500	396	100	82	89	238 (7.0 A g ⁻¹)	1.4 mg	[S6]

Reference

- [S1] K. Xie, L. Li, X. Deng, W. Zhou and Z. Shao, J. Alloys Compd., 2017, 726, 394-402.
- [S2] D. Su, S. Dou and G. Wang, Adv. Energy Mater., 2015, 5, 1401205.
- [S3] J. Xiang and T. Song, Chem. Commun., 2017, 53, 10820-10823.
- [S4] X. Zhang, X. Li, J. Liang, Y. Zhu and Y. Qian, *Small*, 2016, **12**, 2484-2491.
- [S5] H. Geng, J. Yang, Z. Dai, Y. Zhang, Y. Zheng, H. Yu, H. wang, Z. Luo, Y. Guo, Y. Zhang, H. Fan, X. Wu, J. Zheng, Y. Yang, Q. Yan and H. Gu, Small, 2017, 13, 1603490.
- [S6] S. H. Choi and Y. C. Kang, ACS Appl. Mater. Interfaces, 2015, 7, 24694-24702.