Supporting information for

"Mapping Sodium Intercalation Mechanism, Electrochemical Properties and Structural Evolution in Non-stoichiometric Alluaudite $Na_{2+2\delta}Fe_{2-\delta}(SO_4)_3$ Cathode Materials"

Teeraphat Watcharatharapong* ^a, Sudip Chakraborty* ^{a, b}, and Rajeev Ahuja ^{a,c}

^a Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 530, SE-75121, Uppsala, Sweden.

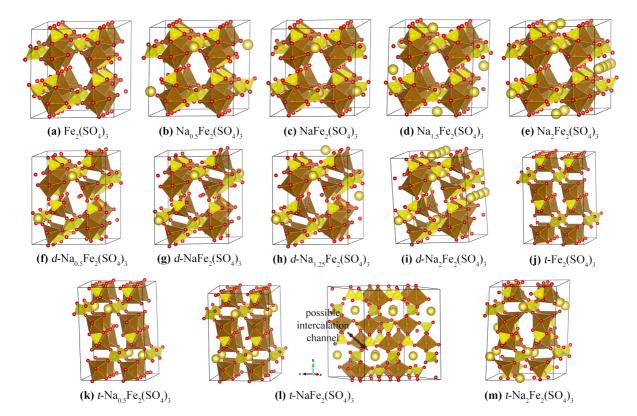
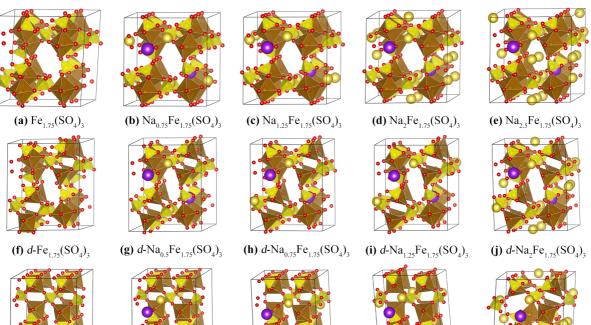
^b Discipline of Physics, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India

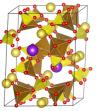
^c Department of Materials Science and Engineering, Royal Institute of Technology, SE-10044 Stockholm, Sweden.

Figures and Tables

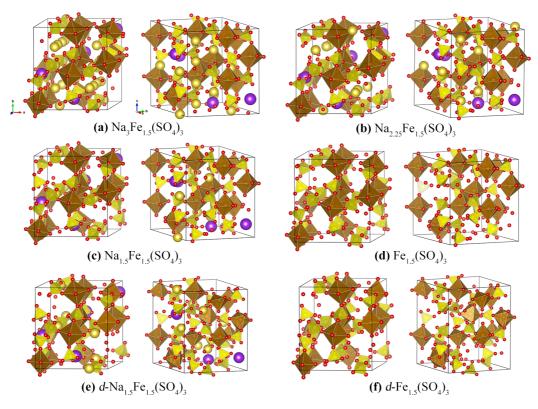
Table S1 Fractional atomic coordinates and occupancies for the fully-desodiated Fe₂(SO₄)₃ structure with *C2/c* symmetry in which a = 17.27 Å, b = 6.41 Å, c = 9.57 Å, and $\beta = 119.08^{\circ}$

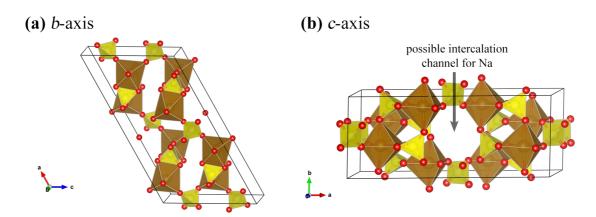
Site	Wyckoff	x	у	Ζ	Occu.
Fe1	8 <i>f</i>	0.1387	0.1313	0.1199	1.0
S 1	4 <i>e</i>	0.0000	0.0017	0.2500	1.0
S2	8 <i>f</i>	0.3114	0.1297	0.3230	1.0
011	8 <i>f</i>	0.0467	0.1384	0.1911	1.0
012	8 <i>f</i>	0.4367	0.3631	0.1188	1.0
O21	8 <i>f</i>	0.3689	0.3152	0.3905	1.0
O22	8 <i>f</i>	0.2355	0.1295	0.3580	1.0
O23	8 <i>f</i>	0.2634	0.1289	0.1423	1.0
O24	8 <i>f</i>	0.1299	0.4451	0.1076	1.0


Figure S1 Minimum energy configurations of Na_xFe₂(SO₄)₃ illustrated in (a-e) pristine, (f-i) *d*-phase and (j-m) *t*-phase.

(I) t-Na_{0.5}Fe_{1.75}(SO₄)₃


(m) $t-Na_{0.75}Fe_{1.75}(SO_4)_3$


(**o**) t-Na₂Fe_{1.75}(SO₄)₃

(**n**) t-Na_{1.25}Fe_{1.75}(SO₄)₃

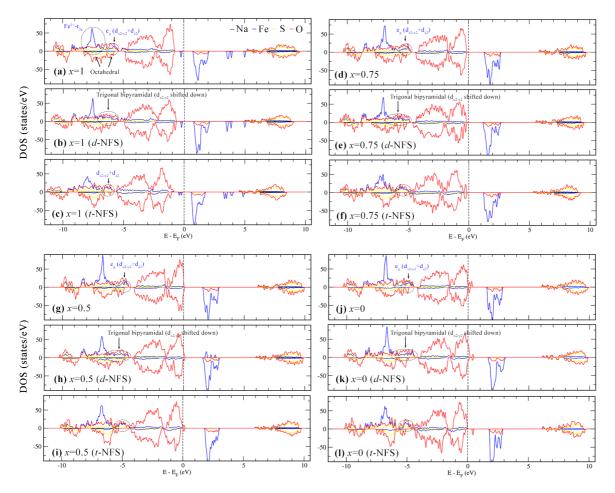

Figure S2 Minimum energy configurations of $Na_xFe_{1.75}(SO_4)_3$ illustrated in (a-e) pristine, (f-j) *d*-phase and (k-o) *t*-phase.

Figure S3 Minimum energy configurations of $Na_xFe_{1.5}(SO_4)_3$ illustrated in (a-d) pristine and (e-f) *d*-phase.

Figure S4 The primitive crystal structure of $Fe_2(SO_4)_3$ in *C2/c* space group (*t*-phase) illustrated along (a) *b*-direction and (b) *c*-direction. Possible intercalation channel for Na⁺ ion in *t*-phase is emerged as shown in (b).

Figure S5 Density of states of desodiated Na_xFe_{1.75}(SO₄)₃ cathodes with (a-c) x = 1, (d-f) x = 0.75, (g-i) x = 0.5 and (j-l) x = 0 in three different phases; the original, *d*- and *t*-phases, respectively. The Fermi levels are set to zero and are represented by the dashed lines. Dashedcircles indicate the change in electronic state for each phase due to the different crystal field splitting around Fe, where the doubly degenerate state (eg orbital; d_{x2-y2} and d_{z2}) is appeared due to FeO₆ octahedral field in the original and *t*-phase, and the lowering d_{x2-y2} orbital is preset due to FeO₅ trigonal bipyramidal field in *d*-phase.