Supplementary Information

Tungsten-doped Ni-Co phosphides with catalytic multi-sites as efficient electrocatalyst for overall water splitting

Shan-Shan Lu^a, Li-Ming Zhang^a, Yi-Wen Dong^{a,b}, Jia-Qi Zhang^a, Xin-Tong Yan^{a,b},

De-Fan Sun^{a,b}, Xiao Shang^{a,b}, Jing-Qi Chi^a, Yong-Ming Chai^a, Bin Dong^{*a,b}

a State Key Laboratory of Heavy Oil Processing, Institute of New Energy, China University of

Petroleum (East China), Qingdao 266580, PR China

b College of Science, China University of Petroleum (East China), Qingdao 266580, PR China

^{*} Corresponding author. Email: dongbin@upc.edu.cn (B. Dong)

Tel: +86-532-86981156, Fax: +86-532-86981156

Fig. S1 (a) XRD pattern of $CoW(OH)_x/NF$, (b) Survey XPS spectrum and (c–e) highresolution XPS scans of $CoW(OH)_x/NF$ in the (c) W 4f, (d) Co 2p, and (e) O 1s regions.

Fig. S2 XRD patterns of W-NiCoP/NF, NiCoP/NF, and W-NiP/NF after scratching off the samples from NF.

Fig. S3 XPS spectra of NiP/NF. (a) Ni 2p and (b) P 2p.

Fig. S6 (a) XPS spectra of W-NiCoP/NF, NiCoP/NF, W-NiP/NF, and NiP/NF in Ni 2p, (b) XPS spectra of W-NiCoP/NF and NiCoP/NF in Co 2p, (c) XPS spectra of W-NiCoP/NF and W-NiP/NF in W 4f.

Fig. S7 SEM images of (a-c) NiP/NF, (d-f) NiCoP/NF, and (g-i) W-NiP/NF.

Fig. S8 (a, b, c) SEM images of CoW(OH)x/NF.

Fig. S9 (a) Elemental contents, (b) AES-ICP of W-NiCoP/NF.

Fig. S10 SAED of W-NiCoP/NF.

Fig. S11 (a) Stability tests for NiCoP/NF by 2000 cyclic voltammetry cycles in 1.0 M

KOH, (b) Stability tests for NiCoP/NF through chronoamperometry for 12 h in 1.0 M.

KOH.

Fig. S12 High-resolution XPS scans of W-NiCoP/NF as counter electrode in the (a) Ni 2p, (b) Co 2p, (c) W 1f, (d) O 1s, and (e) P 2p regions before and after 24 h chronoamperometry test for overall water splitting in 1.0 M KOH.

Fig. S13 High-resolution XPS scans of W-NiCoP/NF as working electrode in the (a) Ni 2p, (b) Co 2p, (c) W 1f, (d) O 1s, and (e) P 2p regions before and after 24 h chronoamperometry test for overall water splitting in 1.0 M KOH.

Element	Atom %
Ni	8.35
Со	15.42
W	2.69
0	73.55

Table S1. Element contents (atom %) of the $CoW(OH)_x/NF$.

Electrocatalyst	j	η	Ref.
	(mA cm ⁻²)	(mV)	
W-NiCoP/NF	10	29.6	This work
Ni-Co-P HNBs	10	107	Energy Environ. Sci., 2018, 11, 87
CoNiP@NF	10	155	J. Mater. Chem. A, 2016, 4, 10195
CoOx@CN	10	232	J. Am. Chem. Soc. 2015 , 137, 2688
Ni/Ni3N foam	10	~399	J. Mater. Chem. A, 2015, 3, 8171
CoP/rGO-T	10	150	Chem. Sci., 2016, 7, 1690
CoP NA/Ti	10	90	Chem. Mater., 2014, 26, 4326
CoP2/RGO	10	88	J. Mater. Chem. A, 2016, 4, 4686
Mn-Co-P/Ti	10	76	ACS Catal., 2016, 7, 98
Ni3FeN-NPs	10	158	Adv. Energy Mater., 2016, 6, 1502585.
Co9S8/CC	_	175	J. Mater. Chem. A, 2016, 4, 6860

Table S2. Comparison of the HER performance of W-NiCoP/NF with other recently

 reported HER electrocatalysts in alkaline media.

Samples	R_s/Ω	R_{ct}/Ω
W-NiCoP/NF	1.053	2.216
NiCoP/NF	1.969	90.1
W-NiP/NF	1.198	9.166
NiP/NF	1.869	70.35

Table S3. Elemental values of simulated equivalent circuit for NiP/NF, W-NiP/NF,NiCoP/NF, and W-NiCoP/NF in alkaline solution.

Electrocatalyst	j	η	Ref.
	(mA cm ⁻²)	(mV)	
W-NiCoP/NF	20	200	This work
Ni-Co-P HNBs	10	270	Energy Environ.Sci., 2018, 11, 872
NiCoP nanoparticle	10	310	<i>Adv. Mater. Interfaces</i> 2016, 3,1500454
FeP	10	288	Chem. Eur. J. 2015, 21, 18062
Co4N/CC	10	257	Angew. Chem. Int. Ed. 2015, 54, 14710
np-(Co0.52Fe0.48)2P	10	270	Energy Environ. Sci. 2016, 9, 2257
Cu0.3Co2.7P/NC	10	190	Adv. Energy. Mater. 2017, 7, 1601555
W0.5Co0.4Fe0.1/NF	10	310	Angew. Chem. Int. Ed. 2017, 56, 4502-4506
N-doped carbon	10	158	Nat. Commun. 2017, 8, 13592
NiFe-NS	10	302	Nat. Commun. 2014, 5, 4477
Ni0.9Fe0.1/NC	10	330	ACS Catal. 2016, 6, 580-588

Table S4. Comparison of the OER performance of W-NiCoP/NF with other recently

 reported electrocatalysts in alkaline media.

Electrocatalyst	j	η	Ref.
	(mA cm ⁻²)	(mV)	
W-NiCoP/NF	20	1.54	This work
Ni5P4/ Ni5P4	10	1.7	Angew.Chem.Int.Ed.
			2015,54,12361
CP@Ni-P/CP@Ni-P	10	1.63	Adv.Funct.Mater. 2016,26,4067
CoP-Cu/CoP-Cu	10	1.645	Angew.ChemInt.Ed. 2015.127.6349.
Ni2P-NF/Ni2P-NF	10	1.63	Energy Environ. Sci. 2015,8,1027.
Ni12P5-NF/ Ni12P5-NF	10	1.64	ACS Catal.2015,7.103
CoSe2-CC/CoSe2-CC	10	1.63	Adv. Mater.2016,28,7527.
NiCo2O4	10	1.65	Angew. Chem. Int. Ed. 2016, 55, 6290
Ni2P	10	1.63	Energy Environ. Sci. 2015, 8, 2347
CoSe film	10	1.65	Chem. Commun. 2015, 51, 16683
NiFeOx	10	1.51	Nat. Commun. 2015, 6, 7261

Table S5. Comparison of the overall water splitting performance of W-NiCoP/NF

 with other recently reported electrocatalysts in alkaline media.

Samples	Ni	Co	W	Р	0
W-NiCoP/NF	2.68	8.23	0.28	21.96	66.84
W-NiCoP/NF-HER	3.31	11.68	3.55	6.47	74.99
W-NiCoP/NF-OER	3.01	11.26	2.84	5.13	77.75

 Table S6 Element contents (atom %) of the W-NiCoP/NF before and after overall

 water splitting