MXene $Ti_3C_2T_x$ for Phase Change Composite with Superior Photothermal Storage Capability

Xiaoqiao Fan^a, Lu Liu^a, Xin Jin^b, Wentao Wang^c, Shufen Zhang^a, and Bingtao Tang^{a,b*}

- ^a State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
- ^b Eco-chemical Engineering Cooperative Innovation Center of Shandong, Qingdao University of Science and

Technology, Qingdao 266042, PR China

^c Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education,

Zhejiang Sci-Tech University, Hangzhou 310018, PR China

Figure S1. SEM images of Ti_3AlC_2 after etching of HF solution (a) and $Ti_3C_2T_x$ nanosheets (b).

Figure S2. XPS spectra of Ti_3AlC_2 and $Ti_3C_2T_x$ samples.

Figure S3. The photo of the PEG(85%)/Ti₃C₂T_x composite.

Figure S4. The cross-sectional TEM image of the composite.

Figure S5. The XRD curves of PEG/Ti₃ C_2T_x with different PEG contents.

Figure S6. The IR spectra of pure PEG and PEG(90%)/Ti₃C₂T_x.

Figure S7. The three groups DSC curves for pure PEG, PEG(85%)/Ti₃C₂T_x and PEG(80%)/Ti₃C₂T_x.

Figure S8. The absorbance spectra of PEG(80%)/Ti₃C₂T_x (1.25 mm) and Ti₃C₂T_x nanosheets (thickness: 0.10 mm).

Form-stable PCM	Light intensity (mW/cm ²)	Light to thermal conversion and storage efficiency (η)	Reference
Paraffin wax/carbon nanotube sponge	90	54%	[11]
Paraffin/anisotropic graphene aerogels	100	77%	[12]
Polyurethane-based PCM/halloysite nanotubes-hybrid graphene aerogel	100	78.4%	[13]
Polyurethane/graphite foam	90	67%	[10]
PEG/polydopamine@BN	100	73.1%	[17]
Wax/graphene foam	150	79.9%	[14]
Polyurethane/rGO	100	78.7%	[15]
PEG/BN/GNP	100	72.7%	[18]
PEG/hybrid graphene aerogels (GO, GNs)	100	91.9%	[19]
$PEG/Ti_3C_2T_x$	128.6/66.5-71.3	94.5%	This work

Table S1The comparison of this work with results of other form-stable PCMs with photothermal conversionand thermal energy storage in literature.

Figure S9. The effect of the enhanced thermal conductivity on the heat storage and release rates of PCMs (m=1

g).

Table S2 The thermal conductivities of the composites with different contents of $Ti_3C_2T_x$ nanosheets.

Samples	PEG	$PEG(85\%)/Ti_3C_2T_x$	PEG(80%)/Ti ₃ C ₂ T _x
Thermal conductivity (W/(m·K))	0.211	0.293	0.321
Increment rate (%)	-	38.9%	52.1%
Temperature (C)	Cycle 1 100	(b) -3 -2 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	
20 0 1000 2000 3000 Time (s)	4000 5000	4 10 20 30 Tem	40 50 60 70 80 perature (°C)

Figure S10. The temperature evolution curves (a) and DSC curves (b) of $PEG(85\%)/Ti_3C_2T_x$ (m=2 g) before and after 100 cycles under simulated light illumination.