Electronic Supplementary Information (ESI)

A multifunctional Zr(IV)-based metal-organic framework

for highly efficient elimination of Cr(VI) in aqueous phase

Junmin Liu[#], Yu Ye[#], Xiaodong Sun, Bing Liu, Guanghua Li, Zhiqiang Liang* and Yunling Liu*

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China E-mail: yunling@jlu.edu.cn; liangzq@jlu.edu.cn

S1. Calculation procedures of selectivity from IAST

The measured experimental data is excess loadings (q^{ex}) of the pure components CO₂, C₂H₂, C₂H₄, CH₄, C₂H₆ and C₃H₈ for **JLU- MOF60**, which should be converted to absolute loadings (q) firstly.

$$q = q^{ex} + \frac{pV_{pore}}{ZRT}$$

Here Z is the compressibility factor. The Peng-Robinson equation was used to estimate the value of compressibility factor to obtain the absolute loading, while the measure pore volume $0.56 \text{ cm}^3 \text{ g}^{-1}$ is also necessary.

The dual-site Langmuir-Freundlich equation is used for fitting the isotherm data at 298 K.

$$q = q_{m_1} \times \frac{b_1 \times p^{1/n_1}}{1 + b_1 \times p^{1/n_1}} + q_{m_2} \times \frac{b_2 \times p^{1/n_2}}{1 + b_2 \times p^{1/n_2}}$$

Here p is the pressure of the bulk gas at equilibrium with the adsorbed phase (kPa), q is the adsorbed amount per mass of adsorbent (mol kg⁻¹), q_{m1} and q_{m2} are the saturation capacities of sites 1 and 2 (mol kg⁻¹), b_1 and b_2 are the affinity coefficients of sites 1 and 2 (1/kPa), n_1 and n_2 are the deviations from an ideal homogeneous surface.

The selectivity of preferential adsorption of component 1 over component 2 in a mixture containing 1 and 2, perhaps in the presence of other components too, can be formally defined as

$$S = \frac{q_1/q_2}{p_1/p_2}$$

 q_1 and q_2 are the absolute component loadings of the adsorbed phase in the mixture. These component loadings are also termed the uptake capacities. We calculate the values of q_1 and q_2 using the Ideal Adsorbed Solution Theory (IAST) of Myers and Prausnitz.

S2. Synthesis of 2,3,5,6-Tetrakis(4-carboxyphenyl)pyrazine

Vitamin B1 (1.1 g, 0.81mmol), CH₃OH (18 mL) and H₂O (6 mL) was added to a 150 mL roundbottomed flask, 2 mol NaOH aqueous solution was added drop by drop to adjust the pH to 9, before methyl 4-formylbenzoate (9.0 g, 54.87 mmol) was added. The mixture was stirred for 1 h in ice water; the reaction was then gradually heated to 85 °C and keep for 4 h. And the crude precipitate was filtered, washed with water and dried at an 80 °C oven. The obtained product (6.50 g, 20.00 mmol) and ammonium acetate (5 g, 60.00 mmol) was dissolved in acetic acid (20 mL), acetic anhydride (3.01 g, 30.00 mmol) was then introduced. The solution was heated at 120 °C and refluxed under the nitrogen for 3 days, and the precipitate was collected by filtration and washed with water and diethyl ether several times, respectively. 2,3,5,6-tetrakis(4-(methoxycarbonyl)phenyl)pyrazine as a yellow solid was obtained without further characterization. The obtained ester (4.00 g) and power NaOH (3.20 g, 79.60 mmol) was placed in the mixture of 60 mL THF and 60 mL H₂O. The solution was then refluxed overnight. After cooling to room temperature, THF was evaporated. The remaining aqueous solution was acidized to pH = 4 with dilute HCl. The resulting precipitate was filtered, washed with water and dried to afford H₄TCPP as yellow solid. As shown in Fig. S1, ¹H NMR (300MHz, DMSO-_{d6}): δ = 13.11 (br, 4 H), 7.97 (d, J = 8.6 Hz, 8 H), 7.69 (d, J = 8.6 Hz, 8 H).

2,3,5,6-tetrakis(4-carboxyphenyl)pyrazine

Scheme S1 The synthesis of ligand 2,3,5,6-tetrakis(4-carboxyphenyl)pyrazine (H₄TCPP).

Fig. S1 ¹H NMR spectrum of 2, 3, 5, 6-tetrakis (4-carboxyphenyl)pyrazine.

Fig. S2 PXRD patterns of JLU-MOF60 for the simulated, as-synthesized and EtOH exchanged samples.

Fig. S3 TGA curves of JLU-MOF60 for the as-synthesized and EtOH exchanged samples.

Fig. S4 PXRD patterns of JLU-MOF60 for the simulated samples and the samples after N₂ adsorption.

Fig. S5 (a) The dihedral angle between benzene rings and pyrazine ring in H₄TCPP, (b) and (e) $Zr_6O_4(OH)_8(H_2O)_4(COO)_8$ SBU in **BUT-12** and **JLU-MOF60**, respectively, (c) The idealized $Zr_6O_4(OH)_4$ cluster core and Zr_6 octahedron (purple) in **BUT-12**, (d) The regular (μ_3 -O)₈ cube (yellow) of **BUT-12**, (f) the irregular $Zr_6O_4(OH)_4$ cluster core and Zr_6 octahedron (purple) in **JLU-MOF60**, (g) The irregular (μ_3 -O)₈ polyhedron (yellow) (grey, C, red, O, red, blue, N, green, Zr, H atoms on ligands are omitted).

Fig. S6 Topological feature of **JLU-MOF60** displayed by tiles, and two kinds of point symbols for gold and purple tiles are $(4^{2} \cdot 6^{4})$ and $(4^{3} \cdot 6^{2})$, respectively.

Fig. S7 PXRD patterns of JLU-MOF60 samples immersed in different organic solutions for 48 h.

Fig. S8 (a) Q_{st} of CO₂ at zero loading, (b) Q_{st} of CH₄ for JLU-MOF60.

Fig. S9 (a) C_2H_2 and (b) C_2H_4 adsorption isotherms at 273 and 298 K, respectively, (c) Q_{st} of C_2H_2 and (d) C_2H_4 for **JLU-MOF60**.

Fig. S10 (a) C_2H_6 and (b) C_3H_8 adsorption isotherms, (c) Q_{st} of C_2H_6 and (d) C_3H_8 for **JLU-MOF60** at 273 and 298 K under 1 bar.

Fig. S11 (a) C_2H_6 and C_3H_8 and (c) C_2H_2 and C_2H_4 adsorption isotherms at 298 K along with the dualsite Langmuir Freundlich (DSLF) fits. The gas mixture adsorption selectivity of (b) C_2H_6/CH_4 and C_3H_8/CH_4 and (d) C_2H_2/CH_4 and C_2H_4/CH_4 are predicted by IAST at 298 K and 100 kPa for JLU-MOF60.

Fig. S12 (a) The solid-state excitation (dot lines) and emission (solid lines) spectra of H_4TCPP ligand with emission peaks at 450 nm under excitation of 385 nm. (b) The solid-state excitation (dot lines) and emission (solid lines) spectra of **JLU-MOF60** with emission peaks at 450 nm under excitation of 385 nm.

Fig. S13 Luminescent spectra of **JLU-MOF60** suspensions in the presence of different solutions (a), cations (b) and anions (c) under excitation of 385 nm, respectively. (d) Effect on the emission spectra of **JLU-MOF60** dispersed in water with the incremental addition of 1 mmol UO_2^{2+} aqueous solution.

Fig. S14 PXRD patterns of samples soaked in different cations and anions.

Fig. S15 The selective detection of $Cr_2O_7^{2-}$ on **JLU-MOF60** in the presence of other anions in the water (red bars: Fluorescence intensity of **JLU-MOF60** dispersed in the water; multicolor bars: Fluorescence intensity of **JLU-MOF60** dispersed in the water with the addition of 100 μ L 10 mmol different anions; grey bars: Fluorescence intensity of **JLU-MOF60** dispersed in the water with the addition of 100 μ L 10 mmol different anions and 100 μ L 1 mmol $Cr_2O_7^{2-}$ solutions).

Fig. S16 Four cycles of the quenching effect of JLU-MOF60 in the presence of 200 μ L 1mmol Cr₂O₇²⁻ solutions.

Fig. S17 PXRD patterns of the as-synthesized samples and the samples after four fluorescence detection cycles.

Fig. S18 (a) UV-vis spectra of different anions in aqueous solutions, (b) the overlap between the emission and excitation spectra of the **JLU-MOF60** and the absorption spectrum of $Cr_2O_7^{2-}$ solutions.

Fig. S19 The standard curve line of $Cr_2O_7^{2-}$ was performed and the concentration of $Cr_2O_7^{2-}$ has a good linear relationship with its absorbance ($R^2 > 0.999$).

Fig. S20 PXRD patterns for JLU-MOF60 samples before and after the measurements of $Cr_2O_7^{2-}$ adsorption.

Fig. S21 UV-vis spectra for the $Cr_2O_7^{2-}$ adsorption behavior of **JLU-MOF60** at low concentration (25 ppm).

Fig. S22 Cycles test of photocatalytic reduction of Cr(VI) using JLU-MOF60.

Fig. S23 PXRD patterns of the as-synthesized samples and the samples after five photocatalytic reduction cycles.

Fig. S24 The apparent rate constant plot for JLU-MOF60 during the photocatalytic reduction reaction.

Fig. S25 (a) XPS survey spectrum of **JLU-MOF60** after photocatalytic reduction reaction, (b) high-resolution Cr 2p spectrum: the two peaks at 577.8 and 587.6 eV are assigned to the $2p_{3/2}$ and $2p_{1/2}$ of Cr(III), which reveals the reduction of Cr(VI) to Cr(III).

S3. Supporting Tables

Table S1. Crystal data and structure refinement for JLU-MOF60

formula	C ₉₁ H ₁₁₈ N ₁₃ O _{44.50} Zr ₆
formula weight	2653.30
temp (K)	293(2) K
wavelength (Å)	0.71073 Å
crystal system, space group	Tetragonal, <i>I4</i> ₁ / <i>amd</i>
<i>a</i> (Å)	15.246(2)
<i>b</i> (Å)	15.246(2)
<i>c</i> (Å)	60.403(12)
$V(Å^3)$	14039(4)
$Z, D_c (Mg/m^3)$	4, 1.255
<i>F</i> (000)	5404
θ range (deg)	2.99 to 25.11°
reflns collected/unique	54313/3386
R _{int}	0.0634
data/restraints/params	3386/1/129
GOF on F^2	1.145
R_1 , wR_2 (I>2 σ (I))	$R_1 = 0.0395$, $wR_2 = 0.1117$
R_1 , wR_2 (all data)	$R_1 = 0.0536, wR_2 = 0.1185$

Table S2. Selected bond lengths [Å] and angles [°] for JLU-MOF60.

Zr(1)-O(2)	2.0707(15)	O(1)-Zr(1)#1	2.2401(18)
Zr(1)-O(2)#1	2.0707(15)	O(1)-H(1)	0.987(19)
Zr(1)-O(5)	2.196(3)	O(2)-Zr(1)#3	2.0707(15)
Zr(1)-O(5)#2	2.196(3)	O(3)-C(8)	1.263(4)
Zr(1)-O(1)	2.2401(18)	O(4)-C(8)	1.261(4)
Zr(1)-O(1)#3	2.2401(18)	N(1)-C(1)#7	1.338(4)
Zr(1)-O(3)#2	2.243(2	N(1)-C(1)	1.338(4)
Zr(1)- $Zr(2)$	3.5136(7)	C(1)-C(1)#8	1.395(7)
Zr(1)-Zr(2)#1	3.5136(6)	C(1)-C(2)	1.496(5)
Zr(1)-Zr(1)#3	3.5344(8)	C(2)-C(7)	1.371(6)
Zr(1)-Zr(1)#1	3.5344(8)	C(2)-C(3)	1.375(5)
Zr(2)-O(2)#4	2.063(3)	C(3)-C(4)	1.388(5)
Zr(2)-O(2)	2.063(3)	C(3)-H(3)	0.9300
Zr(2)-O(4)#5	2.210(2)	C(4)-C(5)	1.381(5)
Zr(2)-O(4)#6	2.210(2)	C(4)-H(4)	0.9300
Zr(2)-O(4)#4	2.210(2)	C(5)-C(6)	1.385(5)
Zr(2)-O(4)	2.210(2)	C(5)-C(8)	1.500(5)
Zr(2)-O(1)	2.338(3)	C(6)-C(7)	1.383(5)
Zr(2)-O(1)#4	2.338(3)	C(6)-H(6)	0.9300
Zr(2)-Zr(1)#1	3.5136(7)	O(2)-Zr(1)-O(2)#1	91.44(17)

Zr(2)-Zr(1)#4	3.5136(7)	O(2)-Zr(1)-O(5)	144.80(10)
Zr(2)-Zr(1)#3	3.5136(7)	O(2)#1-Zr(1)-O(5)	96.86(13)
O(2)-Zr(1)-O(5)#2	96.86(13)	O(5)-Zr(1)-Zr(1)#3	175.81(8)
O(2)#1-Zr(1)-O(5)#2	144.80(10)	O(5)#2-Zr(1)-Zr(1)#3	87.20(10)
O(5)-Zr(1)-O(5)#2	95.8(2)	O(1)-Zr(1)-Zr(1)#3	97.29(8)
O(2)-Zr(1)-O(1)	72.52(11)	O(1)#3-Zr(1)-Zr(1)#3	37.92(6)
O(2)#1-Zr(1)-O(1)	69.31(9)	O(3)-Zr(1)-Zr(1)#3	103.85(8)
O(5)-Zr(1)-O(1)	78.60(12)	O(3)#2-Zr(1)-Zr(1)#3	111.71(7)
O(5)#2-Zr(1)-O(1)	145.66(9)	Zr(2)-Zr(1)-Zr(1)#3	59.805(6)
O(2)-Zr(1)-O(1)#3	69.31(9)	Zr(2)#1-Zr(1)-Zr(1)#3	59.805(6)
O(2)#1-Zr(1)-O(1)#3	72.52(11)	O(2)-Zr(1)-Zr(1)#1	82.30(8)
O(5)-Zr(1)-O(1)#3	145.66(9)	O(2)#1-Zr(1)-Zr(1)#1	31.41(7)
O(5)#2-Zr(1)-O(1)#3	78.60(12)	O(5)-Zr(1)-Zr(1)#1	87.20(10)
O(1)-Zr(1)-O(1)#3	124.17(15)	O(5)#2-Zr(1)-Zr(1)#1	175.81(8)
O(2)-Zr(1)-O(3)	78.57(10)	O(1)-Zr(1)-Zr(1)#1	37.92(6)
O(2)#1-Zr(1)-O(3)	143.13(9)	O(1)#3-Zr(1)-Zr(1)#1	97.29(8)
O(5)-Zr(1)-O(3)	74.36(11)	O(3)-Zr(1)-Zr(1)#1	111.71(7)
O(5)#2-Zr(1)-O(3)	72.04(10)	O(3)#2-Zr(1)-Zr(1)#1	103.85(8)
O(1)-Zr(1)-O(3)	73.84(9)	Zr(2)-Zr(1)-Zr(1)#1	59.805(6)
O(1)#3-Zr(1)-O(3)	132.98(11)	Zr(2)#1-Zr(1)-Zr(1)#1	59.805(6)
O(2)-Zr(1)-O(3)#2	143.13(9)	Zr(1)#3-Zr(1)-Zr(1)#1	90.0
O(2)#1-Zr(1)-O(3)#2	78.57(10)	O(2)#4-Zr(2)-O(2)	92.48(17)
O(5)-Zr(1)-O(3)#2	72.03(10)	O(2)#4-Zr(2)-O(4)#5	143.53(7)
O(5)#2-Zr(1)-O(3)#2	74.36(11)	O(2)-Zr(2)-O(4)#5	84.84(9)
O(1)-Zr(1)-O(3)#2	132.98(11)	O(2)#4-Zr(2)-O(4)#6	84.84(9)
O(1)#3-Zr(1)-O(3)#2	73.84(9)	O(2)-Zr(2)-O(4)#6	143.53(7)
O(3)-Zr(1)-O(3)#2	128.95(13)	O(4)#5-Zr(2)-O(4)#6	117.84(12)
O(2)-Zr(1)-Zr(2)	31.72(7)	O(2)#4-Zr(2)-O(4)#4	84.84(9)
O(2)#1-Zr(1)-Zr(2)	81.80(8)	O(2)-Zr(2)-O(4)#4	143.53(7)
O(5)-Zr(1)-Zr(2)	116.03(8)	O(4)#5-Zr(2)-O(4)#4	76.50(13)
O(5)#2-Zr(1)-Zr(2)	121.02(9)	O(4)#6-Zr(2)-O(4)#4	72.57(14)
O(1)-Zr(1)-Zr(2)	40.92(8)	O(2)#4-Zr(2)-O(4)	143.53(7)
O(1)#3-Zr(1)-Zr(2)	95.15(6)	O(2)-Zr(2)-O(4)	84.84(9)
O(3)-Zr(1)-Zr(2)	71.07(7)	O(4)#5-Zr(2)-O(4)	72.57(14)
O(3)#2-Zr(1)-Zr(2)	159.63(7)	O(4)#6-Zr(2)-O(4)	76.50(13)
O(2)-Zr(1)-Zr(2)#1	81.80(8)	O(4)#4-Zr(2)-O(4)	117.84(12)
O(2)#1-Zr(1)-Zr(2)#1	31.72(7)	O(2)#4-Zr(2)-O(1)	70.60(6)
O(5)-Zr(1)-Zr(2)#1	121.02(9)	O(2)-Zr(2)-O(1)	70.60(6)
O(5)#2-Zr(1)-Zr(2)#1	116.03(8)	O(4)#5-Zr(2)-O(1)	140.09(7)
O(1)-Zr(1)-Zr(2)#1	95.15(6)	O(4)#6-Zr(2)-O(1)	74.26(9)
O(1)#3-Zr(1)-Zr(2)#1	40.92(8)	O(4)#4-Zr(2)-O(1)	140.09(7)
O(3)-Zr(1)-Zr(2)#1	159.63(7)	O(4)-Zr(2)-O(1)	74.26(9)
O(3)#2-Zr(1)-Zr(2)#1	71.07(7)	O(2)#4-Zr(2)-O(1)#4	70.60(6)
Zr(2)-Zr(1)-Zr(2)#1	89.32(2)	O(2)-Zr(2)-O(1)#4	70.60(6)

O(2)-Zr(1)-Zr(1)#3	31.41(7)	O(4)#5-Zr(2)-O(1)#4	74.26(9)
O(2)#1-Zr(1)-Zr(1)#3	82.30(8)	O(4)#6-Zr(2)-O(1)#4	140.09(7)
O(4)#4-Zr(2)-O(1)#4	74.26(9)	Zr(1)-Zr(2)-Zr(1)#3	60.391(12)
O(4)-Zr(2)-O(1)#4	140.09(7)	Zr(1)#4-Zr(2)-Zr(1)#3	60.391(12)
O(1)-Zr(2)-O(1)#4	122.61(14)	Zr(1)-O(1)-Zr(1)#1	104.16(12)
O(2)#4-Zr(2)-Zr(1)#1	31.85(3)	Zr(1)-O(1)-Zr(2)	100.22(10)
O(2)-Zr(2)-Zr(1)#1	82.94(7)	Zr(1)#1-O(1)-Zr(2)	100.2
O(4)#5-Zr(2)-Zr(1)#1	166.38(6)	Zr(1)-O(1)-H(1)	113.5(15)
O(4)#6-Zr(2)-Zr(1)#1	75.75(6)	Zr(1)#1-O(1)-H(1)	113.5(15)
O(4)#4-Zr(2)-Zr(1)#1	110.44(6)	Zr(2)-O(1)-H(1)	123(3)
O(4)-Zr(2)-Zr(1)#1	112.12(7)	Zr(2)-O(2)-Zr(1)	116.43(8)
O(1)-Zr(2)-Zr(1)#1	38.86(4)	Zr(2)-O(2)-Zr(1)#3	116.43(8)
O(1)#4-Zr(2)-Zr(1)#1	95.95(6)	Zr(1)-O(2)-Zr(1)#3	117.17(13)
O(2)#4-Zr(2)-Zr(1)	82.94(7)	C(8)-O(3)-Zr(1)	136.2(2)
O(2)-Zr(2)-Zr(1)	31.85(3)	C(8)-O(4)-Zr(2)	130.0(2)
O(4)#5-Zr(2)-Zr(1)	110.44(6)	C(1)#7-N(1)-C(1)	119.9(4)
O(4)#6-Zr(2)-Zr(1)	112.12(7)	N(1)-C(1)-C(1)#8	120.0(2)
O(4)#4-Zr(2)-Zr(1)	166.38(6)	N(1)-C(1)-C(2)	113.3(3)
O(4)-Zr(2)-Zr(1)	75.75(6)	C(1)#8-C(1)-C(2)	126.65(18)
O(1)-Zr(2)-Zr(1)	38.86(4)	C(7)-C(2)-C(3)	119.4(3)
O(1)#4-Zr(2)-Zr(1)	95.95(6)	C(7)-C(2)-C(1)	122.5(3)
Zr(1)#1-Zr(2)-Zr(1)	60.391(12)	C(3)-C(2)-C(1)	117.6(3)
O(2)#4-Zr(2)-Zr(1)#4	31.85(3)	C(2)-C(3)-C(4)	120.2(4)
O(2)-Zr(2)-Zr(1)#4	82.94(7)	C(2)-C(3)-H(3)	119.9
O(4)#5-Zr(2)-Zr(1)#4	112.12(7)	C(4)-C(3)-H(3)	119.9
O(4)#6-Zr(2)-Zr(1)#4	110.44(6)	C(5)-C(4)-C(3)	120.5(4)
O(4)#4-Zr(2)-Zr(1)#4	75.75(6)	C(5)-C(4)-H(4)	119.7
O(4)-Zr(2)-Zr(1)#4	166.38(6)	C(3)-C(4)-H(4)	119.7
O(1)-Zr(2)-Zr(1)#4	95.95(6)	C(4)-C(5)-C(6)	118.9(3)
O(1)#4-Zr(2)-Zr(1)#4	38.86(4)	C(4)-C(5)-C(8)	119.4(3)
Zr(1)#1-Zr(2)-Zr(1)#4	60.391(12)	C(6)-C(5)-C(8)	121.6(3)
Zr(1)-Zr(2)-Zr(1)#4	90.68(2)	C(7)-C(6)-C(5)	120.1(4)
O(2)#4-Zr(2)-Zr(1)#3	82.94(7)	C(7)-C(6)-H(6)	119.9
O(2)-Zr(2)-Zr(1)#3	31.85(3)	C(5)-C(6)-H(6)	119.9
O(4)#5-Zr(2)-Zr(1)#3	75.75(6)	C(2)-C(7)-C(6)	120.8(4)
O(4)#6-Zr(2)-Zr(1)#3	166.38(6)	C(2)-C(7)-H(7)	119.6
O(4)#4-Zr(2)-Zr(1)#3	112.12(7)	C(6)-C(7)-H(7)	119.6
O(4)-Zr(2)-Zr(1)#3	110.44(6)	O(4)-C(8)-O(3)	125.9(3)
O(1)-Zr(2)-Zr(1)#3	95.95(6)	O(4)-C(8)-C(5)	118.6(3)
O(1)#4-Zr(2)-Zr(1)#3	38.86(4)	O(3)-C(8)-C(5)	115.5(3)
Zr(1)#1-Zr(2)-Zr(1)#3	90.68(2)		

Symmetry transformations used to generate equivalent atoms:

#1 y+1/4, -x+3/4,-z+1/4 #2 -y+3/4,-x+3/4,-z+1/4 #3 -y+3/4,x-1/4,-z+1/4 #4 -x+1,-y+1/2,z+0 #5 x,-y+1/2,z #6 -x+1,y,z #7 -x,y,z #8 x,-y+1,-z
 Table S3. Gas adsorption data for JLU-MOF60.

ľ

Gas	Ads. Amount (cm ³ g ⁻¹)/273 K	Ads. Amount (cm ³ g ⁻¹)/298 K
C ₂ H ₂	149	99
C ₂ H ₄	124	80
C ₂ H ₆	146	112
C ₃ H ₈	145	133

Table S4 Comparison of $Cr_2O_7^{2-}$ detection ability of JLU-MOF60 with MOFs.

MOFs materials	time	K _{SV} (M ⁻¹)	Recyclability	Solvent	Ref.
$[(CH_3)_2NH_2]_6[Cd_3L(H_2O)_2] \cdot 12H_2O$		9.19×10^{5}		water	1
NUM-5		$9.4 imes 10^4$	Yes	water	2
$[Cd(TIPA)_2(ClO_4)_2] \cdot (DMF)_3(H_2O)$		$7.15 imes 10^4$		water	3
JLU-MOF60	seconds	5.91 × 10 ⁴	Yes	water	This work
[Eu ₂ Na(Hpddb)(pddb) ₂ (CH ₃ COO) ₂]·	seconds	$6.45 imes 10^3$	Yes	DMF	4
2.5(DMA)					
$\{[Cd_3(HL)_2(H_2O)_3]\cdot 3H_2O\cdot 2CH_3CN\}n$		$6.99 imes 10^3$	Yes	water	5
[Zn ₂ (TPOM)(NDC) ₂]·3.5H ₂ O		9.21×10^3		water	6
NU-1000	seconds	1.34×10^4	Yes	water	7
JLU-MOF50	seconds	4.99×10^4	Yes	water	8
BUT-39	seconds	$1.57 imes 10^4$	Yes	water	9
[Zn7(TPPE)2(SO4 ²⁻)7](DMF·H2O)	seconds	1.09×10^4		water	10
[Eu ₂ (H ₂ O)(DCPA) ₃] _n		$8.7 imes 10^3$	Yes	water	11
[Eu(Himdc)(ina)(H ₂ O)] _n		$2.46 imes 10^3$		water	12
[Eu ₂ (tpbpc) ₄ ·CO ₃ ·4H ₂ O]·DMF		1.04×10^4	Yes	water	13
[Eu(L)(HCOO)(H ₂ O)] _n		$2.76 imes 10^4$	Yes	water	14
[Tb(L)(HCOO)(H ₂ O)] _n		$2.13 imes 10^4$	Yes	water	14
Eu-MOF		$1.55 imes 10^4$		water	15
{[Zn(L)(bpe)]·DMF} _n		$7.91 imes 10^3$	Yes	DMF	16
Zn-MOF-1	seconds	$2.07 imes 10^4$	Yes	water	17
[Zn ₂ (TPOM)(NH ₂ -BDC) ₂]·4H ₂ O	seconds	7.59×10^3	Yes	DMF	18
[Zn ₂ (TPOM)(BDC) ₂]·4H ₂ O	seconds	$4.45 imes 10^3$	Yes	DMF	18
[Cd(L)(TPOM) _{0.75}].x S	seconds	$1.35 imes 10^4$	Yes	water	19
534-МОҒ-ТЬ	seconds	$1.37 imes 10^4$	Yes	water	20
BUT-28	seconds	1.02×10^5	Yes	water	21

MOF based Adsorbents	Maximum Capacity(mg g ⁻¹)	Ref.
ZJU-101	245	22
BUT-39	215	9
ABT·2CIO ₄	214	23
[Ag(L ²⁴³)](CF ₃ CO ₂)(H ₂ O)	207	24
MOR-2	193	25
MOR-2-HA	162	25
L-SO ₄	166	26
JLU-MOF60	149	This work
1-Br	128	27
$[Cd(TIPA)_2(ClO_4)_2] \cdot (DMF) \cdot 3(H_2O)$	116	3
BUC-17	121	28
FIR-54	103	29
JLU-MOF50	92	8
NU-1000	76	7
FIR-53	74	29
SLUG-35	68	30
1-ClO ₄	63	31
SLUG-21	60	32
PCN-134	57	33
MOF-867	53	34
$\label{eq:cu2} \ensuremath{\left\{ Cu_2 [CuCl(TTCA)(H_2O)_2] \right\}} \cdot NO_3 \cdot 4DMA \cdot 6H_2O$	68	35

Table S5 Comparison of $Cr_2O_7^{2-}$ adsorption ability of JLU-MOF60 with other MOFs.

Catalysts	C₀	C _{cat.}	рН	Time (min)	Reductive	κ	Ref.
	(ppm)	(mg)			rate (%)	(min ⁻¹)	
CuS/MIL-125(Ti)	48	25		70		0.0101	36
MoS ₂ /MIL125(Ti)	48	25		70		0.0060	36
CdS/MIL-125(Ti)	48	25		70		0.0058	36
Ag ₂ S/MIL-125(Ti)	48	25		70		0.0035	36
UiO-66(NH ₂)	10	20	2	80	97		37
PCN-134-22%	100	10	6	75	88.5		33
TiO ₂	100	10	6	75	24.1		33
MOF-525	100	10	6	75	61.9		33
NH ₂ -MIL-125(Ti)	48	20	2	60	97		38
NNU-36	40	15	2	60	95.3	0.0471	39
NH ₂ -MIL-88B (Fe)	8	20	2	40	100		40
Pd@UiO-66(NH ₂)	10	20	2	90	99		41
MIL-68(In)-NH ₂	40	20	6	180	97		42
[Cu ₂ I ₂ (BPEA)](DMF) ₄	10	15	3	10	95		43
B100G100	10	50	2	120	96	0.099	44
BUC-21	10	15	2	30	96		45
$[Cd(4-Hptz)_2 \cdot (H_2O)_2Cl_2]_n$	10	7	3	50	100	0.04818	46
[Cu(btx) ₂ (ClO ₄) ₂] _n	10	7	3	70	92.17	0.02953	46
[Cu(btx)(ClO ₄)] _n	10	7	3	60	82.92	0.02175	46
TPB-BTCOF	10	10	7	75	99		47
TAPT-BTCOF	10	10	7	105	99		47
TPB-TPCOF	10	10	7	105	80		47
Phlo-POF	6	9	3	60	100		48
JLU-MOF60	80	10	6	70	98	0.056	This
							work

Table S6 Comparison of $Cr_2O_7^{2-}$ photocatalytic reduction ability of JLU-MOF60 with reported photocatalysts.

 Table S7 Comparison of anions capture ability of JLU-MOF60 with other cationic MOFs.

MOFs materials	Anions	Max Capture (mg g ⁻¹)	Ref.
[Ag(bipy)]NO ₃	ReO_4^-	786	49
SCU-101	ReO_4^-	217	50
JLU-MOF60	$Cr_2O_7^{2-}$	149	This work
SCU-8	ReO_4^-	45	51
1-ClO4	CrO4 ²⁻	63	52
SLUG-21	CrO ₄ ²⁻	60	53
${[Cd(L)_2(H_2O)_2] \cdot (H_2O)_2 \cdot (ClO_4)_2}$	МО	60	54

References

- 1. B.-B. Lu, W. Jiang, J. Yang, Y.-Y. Liu and J.-F. Ma, ACS *Appl. Mater. Interfaces*, 2017, **9**, 39441-39449.
- 2. Z.-Q. Yao, G.-Y. Li, J. Xu, T.-L. Hu and X.-H. Bu, Chem. Eur. J., 2018, 24, 3192-3198.
- 3. H.-R. Fu, Y. Zhao, Z. Zhou, X.-G. Yang and L.-F. Ma, *Dalton Trans.*, 2018, 47, 3725-3732.
- S. Xu, J.-J. Shi, B. Ding, Z.-Y. Liu, X.-G. Wang, X.-J. Zhao and E.-C. Yang, *Dalton Trans.*, 2019, 48, 1823-1834.
- 5. W.-Q. Tong, W.-N. Liu, J.-G. Cheng, P.-F. Zhang, G.-P. Li, L. Hou and Y.-Y. Wang, *Dalton Trans.*, 2018, **47**, 9466-9473.
- 6. R. Lv, H. Li, J. Su, X. Fu, B.-Y. Yang, W. Gu and X. Liu, Inorg. Chem., 2017, 56, 12348-12356.
- Z.-J. Lin, H.-Q. Zheng, H.-Y. Zheng, L.-P. Lin, Q. Xin and R. Cao, *Inorg. Chem.*, 2017, 56, 14178-14188.
- X. D. Sun, S. Yao, C. Yu, G. H. Li, C. S. Liu, Q. S. Huo and Y. L. Liu, *J. Mater. Chem. A*, 2018, 6, 6363-6369.
- T. He, Y.-Z. Zhang, X.-J. Kong, J. M. Yu, X.-L. Lv, Y. F. Wu, Z.-J. Guo and J.-R. Li, ACS Appl. Mater. Interfaces, 2018, 10, 16650-16659.
- 10. X.-X. Wu, H.-R. Fu, M.-L. Han, Z. Zhou and L. F. Ma, Cryst. Growth Des., 2017, 17, 6041-6048.
- 11. H. M. He, S.- H. Chen, D.-Y. Zhang, R. Hao, C. Zhang, E.-C. Yang and X.-J. Zhao, *Dalton Trans.*, 2017, **46**, 13502-13509.
- 12. L.-H. Liu, X.-T. Qiu, Y.-J. Wang, Q. Shi, Y.-Q. Sun and Y.-P. Chen, *Dalton Trans.*, 2017, 46, 12106-12113.
- 13. J. J. Liu, G. F. Ji, J. N. Xiao and Z. L. Liu, Inorg. Chem., 2017, 56, 4197-4205.
- 14. Z. Sun, M. Yang, Y. Ma and L. C. Li, Cryst. Growth Des., 2017, 17, 4326-4335.
- Y.-L. Gai, Q. Guo, X.-Y, Zhao, Y. Chen, S. Liu, Y. Zhang, C.-X. Zhuo, C. Yao and K.-C. Xiong, *Dalton Trans.*, 2018, 47, 12051-12055.
- Z. W. Chen, X. N. Mi, S. N. Wang, J. Lu, Y. W. Li, D. C. Li, J. M. Dou, J. Solid State Chem., 2018, 261, 75-85.
- 17. X.-Y. Guo, F. Zhao, J.-J. Liu, Z.-L. Liu and Y.-Q. Wang, J. Mater. Chem. A, 2017, 5, 20035-20043.
- R. Lv, J. Wang, Y. Zhang, H. Li, L. Yang, S. Liao, W. Gu and X. Liu, *J. Mater. Chem. A*, 2016, 4, 15494-15500.
- Y. Zhao, X. Xu, L. Qiu, X. Kang, L. Wen and B. Zhang, ACS Appl. Mater. Interfaces, 2017, 9, 15164-15175.
- 20. M. Chen, W.-M. Xu, J.-Y. Tian, H. Cui, J.-X. Zhang, C.-S. Liu and M. Du, *J. Mater. Chem. C*, 2017, **5**, 2015-2021.
- M.-M. Xu, X.-J. Kong, T. He, X.-Q. Wu, L.-H. Xie and J.-R. Li, *Inorg. Chem.*, 2018, 57, 14260-14268.
- Q. Zhang, J. Yu, J. Cai, L. Zhang, Y. Cui, Y. Yang, B. Chen and G. Qian, *Chem. Commun.*, 2015, 51, 14732-14734.
- 23. X. Li, H. Xu, F. Kong and R. Wang, Angew. Chem., Int. Ed., 2013, 52, 13769-13773.
- 24. C.-P. Li, H. Zhou, S. Wang, J. Chen, Z.-L. Wang and M. Du, *Chem. Commun.*, 2017, **53**, 9206-9209.
- 25. S. Rapti, D. Sarma, S. A. Diamantis, E. Skliri, G. S. Armatas, A. C. Tsipis, Y. S. Hassan, M.

Alkordi, C. D. Malliakas, M. G. Kanatzidis, T. Lazarides, J. C. Plakatouras and M. J. Manos, J. Mater. Chem. A, 2017, 5, 14707-14719.

- A. V. Desai, B. Manna, A. Karmakar, A. Sahu and S. K. Ghosh, *Angew. Chem. Int. Ed.*, 2016, 55, 7811-7815.
- 27. X.-X. Lv, L.-L. Shi, K. Li, B.-L. Li and H.-Y. Li, Chem. Commun., 2017, 53, 1860-1863.
- 28. J. Guo, J. J. Li and C. C. Wang, J. Environ. Chem. Eng., 2019, 7, 102909.
- 29. H.-R. Fu, Z.-X. Xu, and J. Zhang, Chem. Mater., 2015, 27, 205-210.
- 30. H. Fei, C. S. Han, J. C. Robins and S. R. J. Oliver, Chem. Mater., 2013, 25, 647-652.
- 31. P. F. Shi, B. Zhao, G. Xiong, Y. L. Hou and P. Cheng, Chem. Commun., 2012, 48, 8231-8233.
- 32. H. Fei, M. R. Bresler and S. R. J. Oliver, J. Am. Chem. Soc., 2011, 133, 11110-11113.
- 33. S. Yuan, J.-S. Qin, L. Zou, Y.-P. Chen, X. Wang, Q. Zhang and H.-C. Zhou, *J. Am. Chem. Soc.*, 2016, **138**, 6636-6642.
- K. M. Choi, H. M. Jeong, J. H. Park, Y.-B. Zhang, J. K. Kang and O. M. Yaghi, ACS Nano, 2014, 8, 7451-7457.
- 35. L. Ma, J. Yang, B.-B. Lu, C.-P. Li and J.-F. Ma, Inorg. Chem., 2018, 57, 11746-11752.
- H. Wang, X. Z. Yuan, Y. Wu, X. H. Chen, L. J. Leng and G. M. Zeng, *RSC Adv.*, 2015, 5, 32531-32535.
- L. J. Shen, S. J. Liang, W. M. Wu, R. W. Liang and L. Wu, *Dalton Trans.*, 2013, 42, 13649-13657.
- H. Wang, X. Z. Yuan, Y. Wu, G. M. Zeng, X. H. Chen, L. J. Leng, Z. B. Wu, L. B. Jiang and H. Li, *J. Hazard. Mater.*, 2015, 286, 187-194.
- H. M. Zhao, Q. S. Xia, H. Z. Xing, D. S. Chen and H. Wang, ACS Sustainable Chem. Eng., 2017, 5, 4449-4456.
- 40. L. Shi, T. Wang, H. B. Zhang, K. Chang, X. G. Meng, H. M. Liu and J. H. Ye, *Adv. Sci.*, 2015, **2**, 1500006.
- 41. L. J. Shen, W. M. Wu, R. W. Liang, R. Lin and L. Wu, Nanoscale, 2013, 5, 9374-9382.
- 42. R. W. Liang, L. J. Shen, F. F. Jing, W. M. Wu, N. Qin, R. Lin and L. Wu, *Appl. Catal. B.*, 2015, **162**, 245-251.
- 43. D.-M. Chen, C.-X. Sun, C. S. Liu and M. Du, Inorg. Chem., 2018, 57, 7975-7981.
- 44. X.-H. Yi, F.-X. Wang, X.-D. Du, P. Wang and C.-C. Wang, *Appl Organometal Chem.*, 2019, **33**, e4621.
- 45. F. X. Wang, X. H. Yi, C. C. Wang and J. G. Deng, Chin. J. Catal., 2017, 38, 2141-2149.
- 46. L. W. Wang, T. Y. Zeng, G. Y. Liao, Q. G. Cheng and Zhiquan Pan, *Polyhedron*, 2019, **157**, 152-162.
- 47. W. B. Chen, Z. F. Yang, Z. Xie, Y. S. Li, X. Yu, F. L. Lu and Long Chen, *J. Mater. Chem. A*, 2019, **7**, 998-1004.
- V. Kostas, M. Baikousi, K. Dimos, K. C. Vasilopoulos, I. Koutselas and M. A. Karakassides, J. Phys. Chem. C, 2017, 121, 7303-7311.
- 49. L. Zhu, C. Xiao, X. Dai, J. Li, D. Gui, D. Sheng, L. Chen, R. Zhou, Z. Chai, T. E. Albrecht-Schmitt and S. Wang, *Environ. Sci. Technol. Lett.*, 2017, 4, 316-322.
- L. Zhu, D. P. Sheng, C. Xu, X. Dai, M. A. Silver, J. Li, P. Li, Y. X. Wang, Y. L. Wang, L. H. Chen, C. L. Xiao, J. Chen, R. H. Zhou, C. Zhang, O. K. Farha, Z. F. Chai, T. E. Albrecht-Schmitt and S. A. Wang, *J. Am. Chem. Soc.*, 2017, **139**, 14873-14876.
- 51. Y. X. Li, Z. X. Yang, Y. H. Wang, Z. L. Bai, T. Zheng, X. Dai, S. T. Liu, D. X. Gui, W. Liu, M.

Chen, L. H. Chen, J. Diwu, L. Y. Zhu, R. H. Zhou, Z. F. Chai, T. E. Albrecht-Schmitt and S. A. Wang, *Nat. Commun.*, 2017, **8**, 1354-1365.

- 52. P.-F. Shi, B. Zhao, G. Xiong, Y.-L. Hou and P. Cheng, Chem. Commun., 2012, 48, 8231-8233.
- 53. H. Fei, M. R. Bresler and S. R. J. Oliver, J. Am. Chem. Soc., 2011, 133, 11110-11113.
- 54. K. Maity and K. Biradha, Cryst. Growth Des., 2016, 16, 3002-3013.