Supporting Information

Three-Dimensional, Hetero-structured, Cu₃P@C Nanosheets with Excellent Cycling Stability as Na-ion Battery Anode Material

Jinliang Zhu^{a,*}, Qiuchen He^a, Yang Liu^a, Julian Key^a, Shuangxi Nie^b, Mingmei Wu^c and Pei Kang Shen^{a,*}

^a Collaborative Innovation Center of Sustainable Energy Materials, School of Resources, Environment and Materials, Guangxi University, 100 Daxue Dong Road, Nanning 530004, PR China.
^b Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, 100 Daxue Dong Road, Nanning 530004, PR China.
^c School of Chemistry, Sun Yat-sen University, Guangzhou 510275, PR China.

* Corresponding author. E-mail: jlzhu@163.com (Jinliang Zhu), stsspk@mail.sysu.edu.cn (Pei Kang Shen), Fax: +86 07713237990, Tel: +86 07713237990.

Copper phosphide	Mophology	Synthesis	Phosphorus source and precursor	Ref.
Cu ₃ P	Amorphous	Solid state	Red phosphorus + Cu (or	[S1]
	form	synthesis	electrodeposited copper)	[S2]
Cu ₃ P	Powder	Solvothermal synthesis	White phosphorus + $CuCl_2 \cdot 2H_2O$	[S3]
Cu ₃ P	Particle	Solvothermal synthesis	Red phosphorus + $CuCl_2 \cdot 2H_2O$	[S4]
Cu ₃ P	Aggregated nanoparticle	Solvothermal synthesis	$\begin{array}{llllllllllllllllllllllllllllllllllll$	[\$5]
Cu ₃ P	Polydispersed particle	Solvothermal synthesis	White phosphorus + Prepared Cu nanoparticle	[S6]
Cu ₃ P	Nanorod	Solvothermal synthesis	$\begin{array}{llllllllllllllllllllllllllllllllllll$	[S7]
Cu ₃ P	Nanopillar	Solid-vapor reaction	Redphosphorus+Electrodeposited Cu nanorod	[S8]
Cu ₃ P	Powder	Ball milling	Red phosphorus + Copper powder	[89]
Cu ₃ P	Powder	Solid-state reaction	Red phosphorus + Cu	[S10-S12]
Cu ₃ P	Micronic	Solvothermal	Yellow phosphorus+	[S13]
	sphere	synthesis	CuSO ₄ ·5H ₂ O or Cu(OH) ₂	[S14]
Cu ₃ P	Sheet-like	Hydrothermal	Yellow phosphorous +	[S15]
	nanocrystalline	synthesis	$CuCl_2 \cdot 2H_2O$	
Cu ₃ P	Platelet	Solvothermal synthesis	PH ₃ gas + CuCl	[S16]
Cu ₃ P	Nanowire	Thermal	Sodium hypophosphite	[S17]
		decomposition	+ Cu(OH) ₂ nanowire	
Cu ₃ P	Plate-like	Solvothermal	TOPO, TOP + CuCl	[S18]
	nanocrystal	using standard Schlenk line		[S19]
Cu ₃ P/Cu	Aggregated particle	High temperature reaction	Red phosphorus + Cu foam	[S20]
CuP ₂	Nanoparticle	Solvothermal synthesis	White phosphorus + prepared Cu nanoparticle	[S21]
CuP ₂	Textured powder	Solid-state reaction	White phosphorus + CuCl ₂	[S22]
CuP ₂	Particle	Ball milling	Red phosphorus + Copper powder	[\$23]
Cu ₃ P	Nanosheet	Heat treatment	- P-containing resin + Cu foam	This work

 Table S1. The main synthesis methods of copper phosphides reported in literatures

Fig. S1 XRD pattern of Cu₃P powder.

Fig. S2 XRD pattern of Cu₃P/C.

Fig. S3 XRD pattern of C^P.

Fig. S4 SEM image of Cu₃P@C5.

Fig. S5 SEM and TEM images of Cu₃P powder.

Fig. S6 SEM images of Cu₃P/C

Fig. S7 SEM images of C^P

Fig. S8 (A) TG-DTG of the resin in N₂ from 25 °C to 800 °C and (B) FTIR spectra of the corresponding pyrolysis products at 90, 325 and 455 °C, respectively.

Fig. S9 (A) TEM image and (B) selected-area electron diffraction of a sphere-like Cu particles.

Fig. S10 (A) XRD pattern, (B) EDS line scanning curve, (C) TEM image and (D) selected-area electron diffraction of a single nanobelt at 900 °C 1 min.

Fig. S11 (A) TEM image, (B) selected-area electron diffraction, (C, D) SEM image and (E) C mapping, (F) Cu mapping and (G) P mapping of a growing nanosheet at 900 °C 30 min.

Fig. S12 N₂ adsorption-desorption isotherm of Cu₃P@C5.

Fig. S13 N₂ adsorption-desorption isotherm of Cu₃P@C15.

Fig. S14 N_2 adsorption-desorption isotherm of Cu_3P powder.

Fig. S15 N_2 adsorption-desorption isotherm of C^P .

Fig. S16 N_2 adsorption-desorption isotherm of Cu_3P/C .

Fig. S17 XPS spectrum (A), XPS-C1s (B) and XPS-N1s (C) of Cu₃P@C5

Fig. S18 XPS spectrum (A), XPS-C1s (B) and XPS-N1s (C) of Cu₃P@C15

Fig. S19 XPS spectrum (A), XPS-Cu $2p_{3/2}$ (B) and XPS-P2p (C) of Cu₃P powder

Fig. S20 XPS spectrum (A), XPS-C1s (B), XPS-N1s (C) and XPS-P2p (D) of C^p

Fig. S21 XPS spectrum (A), XPS-C1s (B), XPS-N1s (C), XPS-Cu2p_{3/2} (D) and XPS-P2p (E) of Cu_3P/C

Fig. S22 Cyclic voltammogram (CV) curves of Cu₃P@C15 at 0.1 mV s⁻¹ between 0.01 and 3.0 V *vs.* Na⁺/Na.

Fig. S23 CV curves of Cu₃P powder at 0.1 mV s⁻¹ between 0.01 and 3.0 V vs. Na⁺/Na.

Fig. S24 CV curves of Cu₃P/C at 0.1 mV s⁻¹ between 0.01 and 3.0 V vs. Na⁺/Na.

 Table S2. Comprehensive overview of recently reported metal phosphide-based SIB electrode materials.

Metal phosphide	Synthesis	Discharge	Cycle	Discharge	Decay	Decay
	method	current	numb	capacities	capacity	ratio
		$(mA g^{-1})$	er	(2 nd cycle to	per cycle	per cycle
				final cycle	(mAh g-	(%)
				mAh g ⁻¹)	1)	
Cu ₃ P/CNS ^[S24]	Solid state	1000	100	\sim 176 to 151	0.250	0.142%
	synthesis					
Cu ₃ P(CPNW) ^[S17]	Thermal	1000	260	196 to 134	0.238	0.122%
	decomposition					
CuP ₂ /C ^[S25]	Ball	200	100	\sim 450 to \sim	0.200	0.044%
	milling			430		
CuP ₂ /C ^[S23]	Ball	150	30	\sim 450 to \sim	0.667	0.347%
	milling			430		
CuP ₂ /C ^[S26]	Ball	500	200	\sim 550 to 379	0.855	0.155%
	milling					
Cu ₃ P-Co ₂ P ^[S27]	Electrospinning	5000	2000	\sim 600 to 317	0.142	0.024%
FeP(FePNC) ^[S28]	Thermal	200	200	\sim 293 to 275	0.090	0.031%
	decomposition					
FeP/NPG [S29]	Thermal	1000	700	422 to 378	0.063	0.015%
	decomposition					
CNT@FeP@C ^[S30]	Thermal	500	500	328 to 295	0.066	0.013%
	decomposition					
H-FeP@C@GR ^[S31]	Thermal	100	250	\sim 730 to 400	1.320	0.181%
	decomposition					
CoP/FeP ^[S32]	Thermal	100	200	\sim 653 to 456	0.985	0.151%
	decomposition					
Co ₂ P-3D PNC ^[S33]	Thermal	500	700	\sim 360 to 271	0.127	0.035%
	decomposition					
A- $Co_2P/C_xN_yB_z$ -	Solid state	200	100	251 to 217	0.340	0.135%
650 ^[834]	synthesis					
CoP@C-RGO-NF ^[S35]	Thermal	100	100	\sim 910 to 473	4.370	0.480%
	decomposition					
CoP@DC@GR ^[S36]	Thermal	500	200	569 to 398	0.855	0.150%
	decomposition					
CoP ₃ @C ^[S37]	Ball	300	260	\sim 240 to 146	0.362	0.151%
	milling					
Ni _{1.5} Co _{1.5} P _x ^[S38]	Thermal	1C	100	600 to ~ 189	4.110	0.685%
	decomposition					
Ni ₂ P@C ^[S39]	Thermal	50	100	\sim 380 to 296	0.840	0.221%
	decomposition					

Ni ₂ P@NPC ^[S40]	Solid state synthesis	500	1200	\sim 240 to 181	0.049	0.020%
Ni ₂ P/NG/Ni ₂ P ^[S41]	Thermal	1000	400	\sim 225 to 108	0.295	0.131%
Ni ₂ P⊂pGN ^[S42]	Solid state synthesis	200	100	\sim 270 to 161	1.090	0.404%
Ni ₂ P/3DG-8 ^[S43]	Thermal decomposition	1000	100	\sim 850 to 230	6.200	0.729%
Ni ₂ P@C/GA ^[S44]	Thermal decomposition	1000	2000	\sim 400 to 125	0.138	0.034%
V ₄ P ₇ /5P ^[S45]	Ball milling	500	100	613 to 294	3.190	0.520%
Cu ₄ SnP ₁₀ /MWCNTs [S46]	Solvothermal synthesis	1000	100	\sim 600 to 325	2.75	0.458%
MGeP _x ^[S47]	Solid state synthesis	1200	200	\sim 1100 to 278	4.110	0.374%
WP/CC [S48]	Thermal decomposition	2000	1000	\sim 300 to 50	0.250	0.083%
Sn ₄ P ₃ /GA-2 ^[S49]	Thermal decomposition	100	100	\sim 820 to 657	1.630	0.199%
Sn ₄ P ₃ @C ^[S50]	Thermal decomposition	100	120	\sim 780 to 700	0.667	0.085%
Sn ₄ P ₃ @C ^[S51]	Solvothermal synthesis	1500	400	\sim 670 to 360	0.775	0.116%
Sn ₄ P ₃ ^[S52]	Solvothermal synthesis"	200	250	480 to 303	0.708	0.148%
Sn ₄ P ₃ @C ^[S53]	Solvothermal synthesis	2000	500	726 to 368	0.716	0.099%
Sn ₄ P ₃ -C ^[S54]	Solvothermal synthesis	2000	2000	\sim 700 to 420	0.140	0.020%
Sn ₄ P ₃ ^[S55]	Solution-L iquid- Solid Growth	500	80	488 to 400	1.100	0.225%
Sn ₄ P ₃ /RGO [S56]	Solvothermal	1000	1500	\sim 690 to 362	0.219	0.032%
Sn ₄ P ₃ ^[S57]	Solvothermal	100	100	\sim 570 to 473	0.970	0.170%
Sn ₄ P ₃ (SPPG) ^[S58]	Ball milling	2000	1000	561 to 371	0.190	0.034%
Cu ₃ P@C5 (this work)	Epitaxial phosphidation growth	5000	2000	162 to 118	0.022	0.013%

Fig. S25 Decay capacities of metal phosphide-based SIB electrode materials recently reported in the literature (within Fig. "This work" in green text refers to Cu₃P@C5).

Fig. S26 Capacity decay ratio per cycle of metal phosphide-based SIB electrode materials recently reported in the literature (within Fig. "This work" in green text refers to Cu₃P@C5).

Fig. S27 TEM images of Cu₃P/C after 300 cycles.

Fig. S28 EIS spectra and equivalent circuit of $Cu_3P@C5$, $Cu_3P@C15$, Cu_3P/C and Cu_3P . (Where R_e , R_{ct} , CPE, and W_o in the fitted equivalent circuit are electrolyte resistance, charge-transfer resistance at the electrode/electrolyte interface, constant phase element impedance, and Warburg impedance, respectively.)

Fig. S29 EIS spectra of Cu₃P@C5 before cycling and after different cycles in a fully charged state.

Fig. S30 EIS spectra of Cu₃P@C15 before cycling and after different cycles in a fully charged state.

Fig. S31 EIS spectra of Cu₃P/C before cycling and after different cycles in a fully charged state.

Fig. S32 EIS spectra of Cu₃P before cycling and after different cycles in a fully charged state.

References

- [S1] B. Mauvernay, M. L. Doublet and L. Monconduit, *Journal of Physics and Chemistry of Solids*, **2006**, 67, 1252.
- [S2] M. Chandrasekar and S. Mitra, *Electrochimica Acta*, 2013, 92, 47.
- [S3] M.-P. Bichat, T. Politova, H. Pfeiffer, F. Tancret, L. Monconduit, J.-L. Pascal, T. Brousse and F. Favier, *Journal of Power Sources*, 2004, 136, 80.
- [S4] M. Bichat, T. Politova, J. Pascal, F. Favier and L. Monconduit, *Journal of The Electrochemical Society*, **2004**, 151, A2074.
- [S5] Y. Xie, H. Su, X. Qian, X. Liu and Y. Qian, *Journal of Solid State Chemistry*, 2000, 149, 88.
- [S6] S. Carenco, Y. Hu, I. Florea, O. Ersen, C. Boissière, N. Mézailles and C. Sanchez, *Chemistry of Materials*, 2012, 24, 4134.
- [S7] Z. Sun, Q. Yue, J. Li, J. Xu, H. Zheng and P. Du, *Journal of Materials Chemistry* A, 2015, 3, 10243.
- [S8] C. Villevieille, F. Robert, P. L. Taberna, L. Bazin, P. Simon and L. Monconduit, *Journal of Materials Chemistry*, **2008**, 18, 5956.
- [S9] M. C. Stan, R. Klöpsch, A. Bhaskar, J. Li, S. Passerini and M. Winter, *Advanced Energy Materials*, **2013**, 3, 231.
- [S10] H. Pfeiffer, F. Tancret, M.-P. Bichat, L. Monconduit, F. Favier and T. Brousse, *Electrochemistry communications*, **2004**, 6, 263.
- [S11] H. Pfeiffer, F. Tancret and T. Brousse, *Electrochimica Acta*, 2005, 50, 4763.
- [S12] F. Poli, A. Wong, J. S. Kshetrimayum, L. Monconduit and M. Letellier, *Chemistry of Materials*, **2016**, 28, 1787.
- [S13] S. Liu, Y. Qian and L. Xu, Solid State Communications, 2009, 149, 438.
- [S14] X. Wang, K. Han, Y. Gao, F. Wan and K. Jiang, *Journal of Crystal Growth*, **2007**, 307, 126.
- [S15] H. Su, Y. Xie, B. Li, X. Liu and Y. Qian, Solid State Ionics, 1999, 122, 157.
- [S16] G. Manna, R. Bose and N. Pradhan, Angewandte Chemie International Edition,

2013, 52, 6762.

[S17] M. Fan, Y. Chen, Y. Xie, T. Yang, X. Shen, N. Xu, H. Yu and C. Yan, *Advanced Functional Materials*, **2016**, 26, 5019.

[S18] L. De Trizio, A. Figuerola, L. Manna, A. Genovese, C. George, R. Brescia, Z.Saghi, R. Simonutti, M. Van Huis and A. Falqui, *Acs Nano*, 2011, 6, 32.

- [S19] J. Liu, M. Meyns, T. Zhang, J. Arbiol, A. Cabot and A. Shavel, *Chemistry of Materials*, **2018**, 30, 1799.
- [S20] S. Ni, J. Ma, X. Lv, X. Yang and L. Zhang, *Journal of Materials Chemistry A*, 2014, 2, 20506.
- [S21] B. M. Barry and E. G. Gillan, Chemistry of Materials, 2008, 20, 2618.
- [S22] B. M. Barry and E. G. Gillan, Chemistry of Materials, 2009, 21, 4454.
- [S23] F. Zhao, N. Han, W. Huang, J. Li, H. Ye, F. Chen and Y. Li, *Journal of Materials Chemistry A*, **2015**, 3, 21754.
- [S24] M. Kong, H. Song and J. Zhou, Advanced Energy Materials, 2018, 8, 1801489.
- [S25] S. O. Kim and A. Manthiram, Chemical Communications, 2016, 52, 4337.
- [S26] S. Kaushik, J. Hwang, K. Matsumoto, Y. Sato and R. Hagiwara, ChemElectroChem, 2018, 5, 1340-1344.
- [S27] J. Li, X. Li, P. Liu, X. Zhu, R. N. Ali, H. Naz, Y. Yu and B. Xiang, ACS Applied Materials & Interfaces, 2019, 11, 11442-11450.
- [S28] Y. Von Lim, S. Huang, Y. Zhang, D. Kong, Y. Wang, L. Guo, J. Zhang, Y. Shi, T. P. Chen, L. K. Ang and H. Y. Yang, *Energy Storage Materials*, 2018, 15, 98-107.
- [S29] Y. Wang, Q. Fu, C. Li, H. Li and H. Tang, ACS Sustainable Chemistry & Engineering, 2018, 6, 15083-15091.
- [S30] F. Han, C. Y. J. Tan and Z. Gao, *ChemElectroChem*, 2016, **3**, 1054-1062.
- [S31] X. Wang, K. Chen, G. Wang, X. Liu and H. Wang, ACS Nano, 2017, 11, 11602-11616.
- [S32] Z. Li, L. Zhang, X. Ge, C. Li, S. Dong, C. Wang and L. Yin, *Nano Energy*, 2017, **32**, 494-502.

- [S33] D. Zhou and L.-Z. Fan, Journal of Materials Chemistry A, 2018, 6, 2139-2147.
- [S34] Y.-M. Xing, X.-H. Zhang, D.-H. Liu, W.-H. Li, L.-N. Sun, H.-B. Geng, J.-P. Zhang, H.-Y. Guan and X.-L. Wu, *ChemElectroChem*, 2017, 4, 1395-1401.
- [S35] X. Ge, Z. Li and L. Yin, *Nano Energy*, 2017, **32**, 117-124.
- [S36] B. Wang, K. Chen, G. Wang, X. Liu, H. Wang and J. Bai, *Nanoscale*, 2019, 11, 968-985.
- [S37] W. Zhao, X. Ma, G. Wang, X. Long, Y. Li, W. Zhang and P. Zhang, Applied Surface Science, 2018, 445, 167-174.
- [S38] X.-W. Wang, H.-P. Guo, J. Liang, J.-F. Zhang, B. Zhang, J.-Z. Wang, W.-B. Luo, H.-K. Liu and S.-X. Dou, *Advanced Functional Materials*, 2018, 28, 1801016.
- [S39] J. Wang, B. Wang, X. Liu, G. Wang, H. Wang and J. Bai, Journal of Colloid and Interface Science, 2019, 538, 187-198.
- [S40] S. Shi, Z. Li, Y. Sun, B. Wang, Q. Liu, Y. Hou, S. Huang, J. Huang and Y. Zhao, *Nano Energy*, 2018, 48, 510-517.
- [S41] C. Dong, L. Guo, Y. He, C. Chen, Y. Qian, Y. Chen and L. Xu, *Energy Storage Materials*, 2018, 15, 234-241.
- [S42] C. Wu, P. Kopold, P. A. van Aken, J. Maier and Y. Yu, Advanced Materials, 2017, 29.
- [S43] H. Li, X. Wang, Z. Zhao, Z. Tian, D. Zhang and Y. Wu, *ChemElectroChem*, 2019, 6, 404-412.
- [S44] X. Miao, R. Yin, X. Ge, Z. Li and L. Yin, Small, 2017, 13, 1702138.
- [S45] S. Kaushik, K. Matsumoto, Y. Sato and R. Hagiwara, *Electrochemistry Communications*, 2019, 102, 46-51.
- [S46] D. Lan, W. Wang and L. Quan, Nano Energy, 2017, 39, 506-512.
- [S47] K.-W. Tseng, S.-B. Huang, W.-C. Chang and H.-Y. Tuan, Chemistry of Materials, 2018, 30, 4440-4447.
- [S48] Q. Pan, H. Chen, Z. Wu, Y. Wang, B. Zhong, L. Xia, H. Y. Wang, G. Cui, X. Guo and X. Sun, *Chemistry-A European Journal*, 2019, 25, 971.

- [S49] E. Pan, Y. Jin, C. Zhao, M. Jia, Q. Chang, R. Zhang and M. Jia, *Applied Surface Science*, 2019, 475, 12-19.
- [S50] X. Fan, T. Gao, C. Luo, F. Wang, J. Hu and C. Wang, *Nano Energy*, 2017, 38, 350-357.
- [S51] J. Liu, P. Kopold, C. Wu, P. A. van Aken, J. Maier and Y. Yu, Energy & Environmental Science, 2015, 8, 3531-3538.
- [S52] H. Sheng, M. Chao, X. Min, R. Shan and Y. Meng, *Sustainable Energy & Fuels*, 2017, 1, 1944-1949.
- [S53] L. Ma, P. Yan, S. Wu, G. Zhu and Y. Shen, *Journal of Materials Chemistry A*, 2017, 5.
- [S54] J. H. Choi, W. S. Kim, K. H. Kim and S. H. Hong, *Journal of Materials Chemistry A*, 2018, 6, 17437-17443.
- [S55] D. Lan, W. Wang, L. Shi, Y. Huang, L. Hu and Q. Li, *Journal of Materials Chemistry A*, 2017, 5, 5791-5796.
- [S56] Q. Li, Z. Li, Z. Zhang, C. Li, J. Ma, C. Wang, X. Ge, S. Dong and L. Yin, Advanced Energy Materials, 2016, 6, 1600376.
- [S57] H. S. Shin, K. N. Jung, Y. N. Jo, M. S. Park, H. Kim and J. W. Lee, Scientific Reports, 2016, 6, 26195.
- [S58] Y. Xu, B. Peng and F. M. Mulder, Advanced Energy Materials, 2018, 8, 1701847.