Supporting information

Ladder-LikeType Conjugated Polymers Used as Hole Transporting Materials for High Efficiency Perovskite Solar Cells

Liren Zhang,^a Jionghua Wu,^b Xin Li,^a Wenhua Li,^{*a} Dongmei Li,^b Qingbo Meng^{*b} and Zhishan Bo^{* a}

^a Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China

^b Key Laboratory for Renewable Energy Chinese Academy of Sciences Beijing Key Laboratory for New Energy Materials and Devices Institute of Physics Chinese Academy of Sciences Beijing 100190, P. R. China

Experimental Section

Materials: N,N-dimethylformamide (DMF, anhydrous, 99.8%, J&K), dimethylsulfoxide (DMSO, anhydrous, 99.8%, J&K), lead (II) bromide (PbBr2, 99.9985%, Sigma-Aldrich), lead (II)iodide (PbI2, 99.9985%, Alfa Aesar), methylammonium bromide (MABr, TCI), formamidinium iodide (FAI, TCI), titanium(**IV**) isopropoxide (TTIP, 97%, Sigma-Aldrich), 1-butanol (99.9%,Sigma-Aldrich), hydrochloric acid (36-38 wt% in water), 2,2',7,7'-tetrakis(N,N-di(p-methoxyphenyl)amine)-9,9-spirobifluorene(Spiro-OMeTAD, Chemlin Chemical Industry Co.,Ltd), lithium bis(trifluoromethanesulfonyl)imide (Li-TFSI, 99%, J&K), 4-tert-butylpyridine (TBP,TCI) were used as received without further purification. (4,8-bis(5-(nonan-3-yl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(trimethylstannane), (4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(trimethylstannane) (132 mg) and (4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(trimethylstannane) were bought from Derthon Optoelectronic Materials Science Technology Co LTD

Device fabrication: Initially the laser-patterned FTO glass substrates (15Ω /sq resistance) were cleaned sequentially by ultrasonication in detergent, deionized water, acetone, and isopropanol. Afterwards, these FTO glasses were treated with UV-ozone for 15 min. The precursor solution for perovskite flms was prepared by dissolving PbI2 (608.5mg), PbBr2 (44mg), FAI (185.7mg), MABr (13.44mg), MAI (38.16mg) in 1000µL DMF /DMSO mixed solvent (v: v = 4: 1). The compact TiO2 layer was deposited on the FTO glass by spin coating titanium isopropoxide solgel precursor solution (0.125 m) at 3000 rpm, then sintered at 500 °C for 1 h. As-prepared TiO2

flms were treated with TiCl4 aqueous solution (0.025 m) for 30 min, then sintered at 500 °C for 1 h. [6,6]-phenyl-C61-butyric acid (PCBA, 0.1 mg/mL) in CB was spin-coated on the top of TiO2 compact flm. Perovskite flms were fabricated by one-step antisolvent spin-coating method. In details, perovskite precursor solution was spin-coated at 1000 rpm for 10 s and subsequently at 5000 rpm for 30 s, CB (120 μ L) was poured onto the spinning substrate at 10 s in the second spinning step. The perovskite flm was heated at 150 °C for 10 min, then at 100 °C in vacuum for 40 min. For a deposition of the hole transport layer, P1, P2, P3 and spiro-OMeTAD (80 mg/mL) were prepared by adding 28.8 μ L of 4-tert-butylpyridine (TBP) and 17.5 μ L of lithium bis(trifluoromethylsulfonyl)imide salt (Li-TFSI) (520 mg/mL in acetonitrile) in 1 mL chlorobenzene, and Polymer-HTM (~10 mg/mL) without any addition. The HTMs were spin-coated at 4000 rpm for 30 s in ambient atmosphere. Finally, 80 nm of Au was deposited by thermal evaporation on the top of the HTM as the back contact.

Measurements and instruments: UV-vis (ultraviolet-visible) absorption spectra were recorded on a PerkinElmer UV-vis spectrometer model Lambda 750. PL (photoluminescence) spectra and time resolved PL spectra were obtained on PL spectrometer FLS 900 (Edinburgh Instruments). SEM (scanning electron microscope) imageswere obtained by S-4800 (Hitachi) field-emission scanning electron microscope (FESEM). Thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC) measurements were performed on TA2100 and Perkin-Elmer Diamond DSC instrument, respectively, under a nitrogen atmosphere at a heating rate of 10° C min-1 to record TGA and DSC curves. The photovoltaic performance of the devices was measured using the Agilent B2902A Source Meter under the illumination of AM 1.5G (100 mW cm-2) AAA class solar simulator (model XES-301S, SAN-EI) in nitrogen and the solar cells were masked with a black aperture to define the active area of 0.04 cm2. And the white light intensity was calibrated with a standard single-crystal Si solar cell. External quantum efficiency (EQE) of the cells was measured with a lab-made setup under 0.3-0.9 mW cm-2 monochromic light illumination without bias illumination.

Materials synthesis:

The target molecule P1, P2 and P3 was synthesized according to a published procedure

with some modification.

(b) Synthetic route to P2 Reagents and conditions

(c) Synthetic route to P3 Reagents and conditions

Polymer P1 (S1)

Into a pre-dried 100 mL flask were charged with (4,8-bis(5-(nonan-3-yl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(trimethylstannane) (137 mg) and 1,4-dibromo-2,5-bis(octyloxy)benzene (74.8 mg). The flask was successively evacuated and refilled with

nitrogen for 3 cycles. Then toluene (10 mL) and DMF (2 mL) were added, and the mixture was purged with nitrogen for 10 min. After the addition of Pd(PPh₃)₄ (11 mg) purging for another 30 min was conducted. The reaction mixture was stirred at 100 °C for 48 hours. After cooling to room temperature, the crude product was collected by precipitating from methanol. The solid was rinsed in a Soxhlet extractor with acetone, hexane, dichloromethane and chloroform successively. The solution in chloroform was concentrated, and then precipitated in methanol. The polymer was obtained after drying at a reduced pressure. 103.7 mg, yield: 72.8%. $M_{\rm B}$: 48,114; PDI: 1.6

Polymer P2 (S1)

Into a pre-dried 100 mL flask were charged with (4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(trimethylstannane) (132 mg) and 1,4-dibromo-2,5-bis(octyloxy)benzene (84.3 mg). The flask was successively evacuated and refilled with nitrogen for 3 cycles. Then toluene (10 mL) and DMF (2 mL) were added, and the mixture was purged with nitrogen for 10 min. After the addition of Pd(PPh₃)₄ (10 mg) purging for another 30 min was conducted. The reaction mixture was stirred at 100 °C for 48 hours. After cooling to room temperature, the crude product was collected by precipitating from methanol. The solid was rinsed in a Soxhlet extractor with acetone, hexane, dichloromethane and chloroform successively. The solution in chloroform was concentrated, and then precipitated in methanol. The polymer was obtained after drying at a reduced pressure. 91.8 mg, yield: 69.1%. *M*_n: 48,114; PDI: 1.6

Polymer P3 (S1)

Into a pre-dried 100 mL flask were charged with (4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(trimethylstannane) (165 mg) and 2,5-dibromothiophene (51.8 mg). The flask was successively evacuated and refilled with nitrogen for 3 cycles. Then toluene (10 mL) and DMF (2 mL) were added, and the mixture was purged with nitrogen for 10 min. After the addition of Pd(PPh_3)4 (12.3 mg) purging for another 30 min was conducted. The reaction mixture was stirred at 100 °C for 48 hours. After cooling to room temperature, the crude product was collected by precipitating from methanol. The solid was rinsed in a Soxhlet extractor with acetone, hexane, dichloromethane and chloroform successively. The solution in chloroform was concentrated, and then precipitated in methanol. The polymer was obtained after drying at a reduced pressure. 85.3 mg, yield: 75.8%. $M_{\rm n}$: 48,114; PDI: 1.6

Figure S1. (a) DSC and (b) TGA curves of P1, P2 and P3 under N2 atmosphere.

Figure S2. CV oxidation peak of (b)P1, (c)P2 and (d)P3, which ferrocene as a reference.

Figure S3. CV redox peak of (b)P1, (c)P2 and (d)P3, which ferrocene as a reference.

HTM	E _{HOMO} [eV]	E _{LUMO} [eV] ^a	E _g [eV] ^a	E _{LUMO} [eV] ^b	E _g [eV] ^b
P1	-5.43	-3.35	2.09	-3.60	1.83
P2	-5.76	-3.56	2.20	-3.71	2.05
P3	-5.30	-3.17	2.13	-3.63	1.67

^{*a*} Data based on absorption spectrum; ^{*b*} Data based on CV method;

Table S1. HOMO, LUMO and E_g data of polymers obtained by absorption spectra (a) and CV curve (b)

Device Fabrication

The precursor solution for perovskite flms was prepared by dissolving PbI2 (1.15 m), PbBr2 (0.20 m), FAI (1.10 m), MABr (0.20 m), MAI (0.20 m) in DMF /DMSO mixed solvent (v: v = 4: 1). The compact TiO2 layer was deposited on the FTO glass by spin coating titanium isopropoxide sol–gel precursor solution (0.125 m) at 3000 rpm, then sintered at 500 °C for 1 h.

As-prepared TiO2 flms were treated with TiCl4 aqueous solution (0.025 m) for 30 min, then sintered at 500 °C for 1 h. [6,6]-phenyl-C61- butyric acid (PCBA, 0.1 mg/mL) in CB was spin-coated on the top of TiO2 compact flm.[2,32] Perovskite flms were fabricated by one-step antisolvent spin-coating method. In details, perovskite precursor solution was spin-coated at 1000 rpm for 10 s and subsequently at 5000 rpm for 30 s, CB (120 μ L) was poured onto the spinning substrate at 15 s in the second spinning step. The perovskite flm was heated at 150 °C for 10 min, then at 100 °C in vacuum for 40 min. Average 200 nm thickness spiro-OMeTAD layer with Li and Co-doped was deposited onto the perovskite flm at a speed of 3500 rpm and then heated for 5 min at 60 °C on a hot plate. The precursor preparation, perovskite, and spiro-OMeTAD spin-coating processes were carried out in the glove box. At last, 80 nm thickness Au electrode was deposited via thermal evaporation under the vacuum of 10⁻⁷ Torr.

Figure S4. Cross-sectional image of the device based on FTO/c-TiO2/PCBA/(FAPbI3)0.85(MAPbBr3)0.15/Polymer-HTM/Au.

Figure S5. Cross-sectional image of the device based on FTO/c-TiO2/PCBA/(FAPbI3)0.85(MAPbBr3)0.15/Spiro-OMeTAD/Au.

Figure S6. The water contact angles of (a)_P1, (b)_P2 and (c)_P3 on glass substrates.

Figure S7. UV-Vis transmittance curve of (FAPbI₃)_{0.85}(MAPbBr₃)_{0.15} film and (FAPbI₃)_{0.85}(MAPbBr₃)_{0.15}/P-1 film

	τ ₁ [ns]	A ₁	τ ₂ [ns]	A ₂
PVSK	29.99	0.23	123.21	0.42
Spiro-OMeTAD	2.83	39.57	10.18	1.09
P1	3.29	24.21	17.05	0.58
P2	4.87	7.27	25.37	0.48
Р3	4.78	8.45	42.48	0.23

Table S2. The parameters of fitting TRPL curve

The time-resolved photoluminescence (TRPL) spectra were fitted with a two-component exponential decay model

$$I(t) = A_1 e^{(-t/\tau_1)} + A_2 e^{(-t/\tau_2)}$$