Facile Catalyst-free Synthesis, Exchanging, Hydrolysis of Acetal Motif for Dynamic Covalent Networks

Qiong Li^{†‡}, Songqi Ma[†]*, Sheng Wang^{†‡}, Wangchao Yuan^{†‡}, Xiwei Xu[†], Binbo Wang[†], Kaifeng Huang[†], Jin Zhu[†]*

[†] Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China;

[‡]University of Chinese Academy of Sciences, Beijing 100049, P. R. China;

*Corresponding authors: (Songqi Ma) E-mail masongqi@nimte.ac.cn, Tel 86-0574-87619806;

(Jin Zhu) E-mail jzhu@nimte.ac.cn.

Fig. S1 ¹H NMR spectrum of 2-(4-vinyl-benzyloxy)-ethanol (1).

Fig. S2 ¹³C NMR spectrum of 2-(4-vinyl-benzyloxy)-ethanol (1).

Calculated theoretical element contents for $C_{10}H_{14}O_2$ (%): C, 74.16; H, 7.86; O: 17.98. Measured element contents for $C_{10}H_{14}O_2$ (%): C, 74.85, 74.76; H, 7.48, 8.16; O: 17.64, 18.09.

Fig. S3 HPLC spectrum of compound 1. Purity is 97.2%.

Fig. S5 ¹H NMR spectrum of poly (styrene-co-styrene-OH) (PSS-OH).

The molar proportion of 1 in PSS-OH was calculated from the integral area of protons c (1.99)

and protons a and b (9.99) in the ¹H NMR spectrum of PSS-OH (Fig. S5).

The molar proportion of
$$1 = \frac{1.99/2}{\frac{1.99}{2} + \frac{9.99 - 1.99 \times 2}{5}} \times 100\% = 45\%$$

Fig. S6 ¹H NMR spectrum of 2-(4-methylbenzyloxy) ethanol (2).

Fig. S7 ¹³C NMR spectrum of 2-(4-methylbenzyloxy) ethanol (2).

Fig. S8 ¹³C-¹H-COSY HMQC of ac alcohol 2 and CVDE at 25 °C.

Fig. S9 ¹³C-¹H-COSY HMQC of ac alcohol 2 and CVDE at 80 °C.

Fig. S10 Non-isothermal DSC curves of the acetal dynamic networks.

Fig. S11 The images of PC-5% OH before and after immersing in 40 °C THF, acetone,

toluene for 12 h and H_2O for 2h.

Fig. S12 DSC curves of the acetal dynamic networks PC-0% OH, PC-5% OH and PC-0%

OH-Toluene (prepared with the help of toluene).

Fig. S13 Isothermal TGA curves of PC-5% OH at 180 °C under nitrogen.

Fig. S14 Arrhenius plots of the measured relaxation times.

Calculation of topology-freezing temperatures (T_v) and activation energies $(E_a)^{-1}$

Topology-freezing temperatures (T_v) and activation energies (E_a) were determined using the methodology reported in literature². The measured values of characteristic relaxation times (τ^*s) were plotted versus 1000/T. The plots were fit to the Arrhenius law in equation (1)

$$\tau^{*}(T) = \tau_{0}^{*} e^{\frac{E_{d}}{RT}}$$
(1)

(*R* : universal gas constant; 8.314 J K⁻¹ mol⁻¹)

Equation (2) can be transformed to equation (2) (Fig. S9):

$$\ln \tau^{*}(T) = \ln \tau_{0}^{*} + \frac{Ea}{RT}$$
(2)

PC-0% OH: $ln\tau^*(T) = 16.32 \times \frac{1000}{T} - 31.26$ (3) $E_a/R=16.32$ $E_a=136$ kJ mol⁻¹

PC-5% OH: $ln\tau^*(T) = 15.17 \times \frac{1000}{T} - 29.04$ (4) $E_a/R=15.17 \qquad E_a=126 \text{ kJ mol}^{-1}$

 T_{ν} is defined to be the temperature at which the material reaches a viscosity of 10¹² Pa. The relation of the viscosity η and the τ^* is known as the Maxwell relation (equation (5)

$$\eta = G \times \tau^* = (E'/2(1+v)) \times \tau^*$$
 (5)

(G : shear modulus, E' : storage modulus, v : Poisson's ratio)

Using the Poisson's ratio (v) of polystyrene (0.336),

$$\eta = 0.374 \times E' \times \tau^* \tag{6}$$

The storage modulus of PC-0% OH from 150 °C to 180 °C is 8.5 MPa, and that of PC-5% OH in the same temperature range is 7.1 MPa (Fig. 5). Because η is 10¹² Pa at T_{ν} , τ *s at T_{ν} of PC-0% OH and PC-5% OH are calculated to be 3.1×10^5 s and 3.8×10^5 s, respectively. Using these values and equation (3) and (4), T_{ν} was computed to be 99 °C for PC-0% OH and 89 °C for PC-5% OH.

Fig. S15 Stain recovery as a function of time from creep tests for PC-5% OH under 0.2 MPa stress at different temperatures.

Fig. S16 a) Creep curves of PC-0% OH. b) Stain recovery as a function of time from creep

tests for PC-0% OH under 0.2 MPa stress at different temperatures.

Fig. S17 XPS spectra of original and reprocessed samples.

Fig. S18 ¹³C-¹H-COSY HMQC of acetal 3 and 4 at 150 °C for 0 min.

Fig. S19 ¹³C-¹H-COSY HMQC of acetal 3 and 4 at 150 °C for 8 h.

Fig. S20 ¹³C-¹H-COSY HMQC of alcohol 2 and acetal 4 at 150 °C for 0 min.

Fig. S21 ¹³C-¹H-COSY HMQC of alcohol 2 and acetal 4 at 150 °C for 8 h.

Fig. S22 Catalyst-free acetal exchange mechanism: a) metathesis of acetal and the ¹H NMR spectra of the reaction system at 150 °C for different times; b) transacetalation and the ¹H NMR spectra of the reaction system at 150 °C for different times.

Fig. S23 GPC curves of recycled and original PSS-OH in THF.

Fig. S24 The images of PC-0% OH before and after immersing in 25 °C water for 48 h.

Table S1. Swelling degree of PC-5% OH at 40 $^\circ C$ in THF, acetone, toluene for 12 h and $\rm H_2O$

	for 2		
	$m_0 (\mathrm{mg})$	m_1 (mg)	Swelling degree (%)
THF	123.2	216.8	176
Toluene	83.6	133.7	160
Acetone	71.9	105.6	147
H ₂ O	83.7	90.4	108

 Table S2. Gel content of the acetal networks.

	m_0 (mg)	m_1 (mg)	Gel content (%)
РС-0% ОН	212.5	206.2	97
РС-5% ОН	207.3	199.2	96

Table S3. Mechanical properties of the original and reprocessed acetal networks.

Samula		Tensile strength	Young's modulus	Elongation at
Sample		(MPa)	(MPa)	break(%)
РС-0% ОН	original	33.3±2.1	1109±113	5.3±0.9
	1st reprocessed	32.0±1.2	1009 ± 76	4.4±1.1
	2 rd reprocessed	29.7±1.9	968±89	4.5±0.3
РС-5% ОН	original	28.8±1.9	1046±54	4.4±0.7
	1st reprocessed	29.2±2.7	871±67	5.0±0.9
	2rd reprocessed	27.2±1.6	879±71	3.4±0.3

REFERENCES

1 Y. Nishimura, J. Chung, H. Muradyan and Z. Guan, J. Am. Chem. Soc., 2017, **139**, 14881-14884.

2 M. Capelot, M. M. Unterlass, F. Tournilhac and L. Leibler, ACS Macro Lett., 2012, 1, 789-792.