Supporting Information

Fig. S1. (a) XRD patterns of commercial RuO_2 powder (Sigma-Aldrich). (b) N_2 adsorptiondesorption isotherm of RuO_2 . (c) SEM image of RuO_2 .

Fig. S2. SEM images with different magnifications of (a-d) RuS₂-400, (e-h) RuS₂-500, (i-l) RuS₂-600 and (m-p) RuS₂-700.

Fig. S3. HRTEM images of (a) RuS₂-400, (b) RuS₂-500, (c) RuS₂-600 and (d) RuS₂-700.

Fig. S4. Deconvoluted XPS S 2p spectra of (a) RuS_2 -400, and (b) RuS_2 -500, (c) RuS_2 -600 and (d) RuS_2 -700.

Fig. S5. XPS spectra of O1s for RuS₂-T and RuO₂.

Fig. S6. EDX spectra of (a) RuS_2 -400, and (b) RuS_2 -500, (c) RuS_2 -600 and (d) RuS_2 -700.

Fig. S7. Potential calibration of the Ag/AgCl reference electrode in 1 M KOH solution. The calibration was performed in a high purity hydrogen-saturated electrolyte with a platinum rotating disk electrode (PINE, 4 mm diameter, 0.126 cm²) as the working electrode. Cyclic voltammetry (CV) was run at a scan rate of 1 mV s⁻¹, and the average of the two potentials at which the current crossed zero was taken to be the thermodynamic potential for the hydrogen electrode reaction. In 1 M KOH, $E_{RHE} = E_{Ag/AgCl} + 1.002 V$.

Fig. S8. (a) HER and (b) OER polarization curve of conductive carbon in 1 M KOH.

Fig. S9. HER polarization curves of RuS_2 -T, RuO_2 and Pt/C catalysts in Ar-saturated 0.5 M H_2SO_4 solution. Scan rate, 5 mV s⁻¹.

Fig. S10. CV measurements in a non-faradic current region (-0.85--0.8 V vs. Ag/AgCl) at scan rates of 20, 40, 60, 80 and 100 mV s⁻¹ of (a) RuO₂, (b) RuS₂-400, (c) RuS₂-500, (d) RuS₂-600 and (e) RuS₂-700 catalysts in 1 M KOH solution.

Fig. S11. N_2 adsorption-desorption isotherm of (a) RuS_2 -400, (b) RuS_2 -500, (c) RuS_2 -600 and (d) RuS_2 -700.

Fig. S12. XRD patterns of RuS_2 -500 loaded on the Ti foil substrate before and after HER for 50 cycles. The XRD patterns show that there is no apparent variation in the peak pattern and position between as-prepared and post-HER RuS_2 -500, revealing the unchanged bulk crystal structure of RuS_2 -500 during HER.

Fig. S13. XPS spectra of (a) Ru 3p and (b) S 2p for RuS_2 -500 before and after HER for 50 cycles. XPS spectra of Ru 3p and S 2p show almost no change after HER for 50 cycles.

Fig. S14. Capacitive correction of the as-measured CV curve (10 mV s⁻¹) of example catalyst (i.e., RuS_2 -500).

Fig. S15. Nyquist plots of RuO₂, RuS₂-400, RuS₂-500, RuS₂-600 and RuS₂-700 catalysts recorded at 0.6 V vs. Ag/AgCl (no iR-corrected) under the influence of an AC voltage of 10 mV.

Fig. S16. CV measurements in a non-faradic current region (0.2-0.25 V vs. Ag/AgCl) at scan rates of 20, 40, 60, 80 and 100 mV s⁻¹ of (a) RuO₂, (b) RuS₂-400, (c) RuS₂-500, (d) RuS₂-600 and (e) RuS₂-700 catalysts in 1 M KOH solution.

Fig. S17. Cyclic voltammograms of (a) RuO_2 and (b) RuS_2 -500 for 5 cycles within OER potential window.

Fig. S18. XRD patterns of RuS_2 -500 loaded on the Ti foil substrate before and after OER for 50 cycles.

Fig. S19. XPS spectra of (a) Ru 3p, (b) S 2p and (c) O 1s for RuS₂-500 before and after HER for 50 cycles. The peak of Ru $3p_{3/2}$ slightly shifts to higher energy for post-OER samples, indicating partial oxidation on the surface. In O 1s, the peak at ~534.8 eV is originating from the CFOCHF of Nafion solution^[1,2] which was included in the electrode preparation. The peaks at ~529-530 eV are associated with the lattice oxygen in metal oxides^[3-5].

Fig. S20. Intrinsic activity of RuO_2 and RuS_2 -T for (a) HER and (b) OER.

Samples	τ1 (ns)	τ2 (ns)	τ3 (ns)	I1 (%)	I2 (%)	I3 (%)	
RuS ₂ -400	0.18±0.03	0.350±0.007	1.61±0.14	17±5	82±5	1.2±0.2	
RuS ₂ -500	0.20±0.02	0.358±0.007	1.61±0.17	18±5	81±5	1.1±0.2	
RuS ₂ -600	0.20±0.02	0.355±0.009	1.55±0.18	23±6	76±6	1.1±0.2	
RuS-700	0 20+0 02	0 349+0 01	1 84+0 24	27+7	72+7	1 0+0 2	-

Table S1. Position annihilation lifetime parameters of RuS₂-T samples.

 Table S2. S 2p XPS peak deconvolution results.

Samples	S_2^{2-} (Ru _{CN} =3)	S ₂ ²⁻ (Ru _{CN} =2)	S-O
RuS ₂ -400	75.4%	11.2%	13.4%
RuS ₂ -500	78.5%	9.0%	12.5%
RuS ₂ -600	83.1%	4.3%	12.6%
RuS ₂ -700	85.9%	1.9%	12.2%

Catalysts	Substrate	Mass loading (mg·cm ⁻²)	η @ -10 mA cm ⁻² (mV)	Tafel slope (mV dec ⁻¹)	References			
RuS ₂₋ 500	Glass carbon	0.278	79	50	This work			
Ru-based catalysts								
Ru@C ₂ N	N.A. ^[a]	0.285	17	38	<i>Nat. Nanotech.</i> 2017 , 12, 441			
Ru@TiO2 ^[b]	Glass carbon	0.255	110	95	J. Am. Chem. Soc. 2018 , 140, 5719			
RuP ₂ @NPC	Glass carbon	1	52	69	Angew. Chem. Int. Ed. 2017 , 56, 11559			
RuP	Ni foam	0.21	168	123	Adv. Energy Mater. 2018 , 8, 1801478			
		Pyrite-bas	sed catalysts					
Mesoporous FeS ₂ ^[b]	Ni foam	0.53	96	78	J. Am. Chem. Soc. 2017 , 139, 13604			
NiS ₂ /CoS ₂ -O NW	CFP	0.218	174	45	<i>Adv. Mater.</i> 2017 , 29, 1704681			
2D NiS ₂	Ni foam	1.6	122	86	<i>Nano Energy</i> 2017 , 41, 148			
V-doped NiS ₂	Glass carbon	0.272	110	90	ACS Nano 2017, 11, 11574			
Ni _{0.33} Co _{0.67} S ₂ NW	Ti foil	0.3	88	118	Adv. Energy Mater. 2015, 5, 1402031			
Pt@CoS ₂	Carbon cloth	0.5	24	82	<i>Adv. Energy Mater.</i> 2018 , 8, 1800935			
Co _{0.97} V _{0.03} SP	Glass carbon	0.28	105	65	<i>Adv. Energy Mater.</i> 2018 , 8,1702139			
$Co(S_xSe_{1-x})_2$	Ni foam	1	122	86	<i>Adv. Funct. Mater.</i> 2017 , 27, 1701008			
o-CoSe ₂ P	Glass carbon	1.02	104	69	Nat. Commun. 2018 , 9, 2533			
c-CoSe ₂	Carbon cloth	0.5	200	85	<i>Adv. Mater.</i> 2016 , 28, 7527			
Ni _{0.89} Co _{0.11} Se ₂ MNS	Ni foam	2.62	85	52	<i>Adv. Mater.</i> 2017 , 29, 1606521			
Tubular CoSe ₂ NS	Ni foam	N.A	79	84	Angew. Chem. Int. Ed. 2018 , 130, 7775			
Ni _{0.33} Co _{0.67} Se ₂	CFP	N.A	106	60	Adv. Energy Mater., 2017, 7, 1602089			

Table S3. Comparison of HER activity for RuS_2 -500 and well-known Ru-based/pyrite-based catalysts in 1 M KOH.

Note: NW, Nanowire; MNS, Mesoporous nanosheet; NS, Nanosheet; CFP, Carbon fiber paper. [a]: N. A.=Not available. [b]: The electrolyte is 0.1 M KOH.

Catalysts	Substrate	Mass loading (mg·cm ⁻²)	η @ 10 mA cm ⁻² (mV)	Tafel slope (mV dec ⁻¹)	References				
RuS ₂₋ 500	Glass carbon	0.278	282	105	This work				
	Ru-based catalysts								
Ru-Ni SN	Glass carbon	0.1	310	75	Nano Energy 2018 , 47, 1				
Ru-RuP _x -Co _x P	Glass carbon	N.A. ^[a]	291	85	Nano Energy 2018 , 47, 270				
$Pb_2Ru_2O_{6.5}^{\left[b\right]}$	Glass carbon	0.637	~410	114	Energy Environ. Sci., 2017 , 10, 129				
		Pyrite-bas	ed catalysts						
Bulk CoS ₂	Glass carbon	0.8	480	160	Angew. Chem. Int. Ed. 2017 , 56, 4858				
$Ni_{6/7}Fe_{1/7}S_2$	Glass carbon	0.2	350	69	<i>Adv. Mater.</i> 2018 , 30, 1800757				
FeNiS ₂ NS	Glass carbon	0.1	410	135	<i>Nano Energy</i> 2018 , 43, 300				
Pt-CoS ₂	Carbon cloth	0.5	300	58	<i>Adv. Energy Mater.</i> 2018 , 8, 1800935				
NiSe ₂	Glass carbon	0.255	344	91	Nano Energy. 2018 , 47, 275				
Ag-CoSe ₂	Glass carbon	0.2	320	56	Angew. Chem., Int. Ed. 2017 , 56, 328				
Au ₂₅ /CoSe ₂ ^[b]	Glass carbon	0.2	410	80	J. Am. Chem. Soc., 2017 , 130, 1077				
Mn ₃ O ₄ /CoSe ₂ ^[b]	Glass carbon	0.2	450	49	J. Am. Chem. Soc., 2012 , 134, 2930				
SUC CoSe ₂	Glass carbon	0.17	~350	64	Angew. Chem. Int. Ed. 2015 , 54, 12004				

Table S4. Comparison of OER activity for RuS₂-500 and well-known Ru-based/pyrite-based catalysts in 1 M KOH.

Note: SN, Sandwiched nanoplate; NS, Nanosheet; SUC, Single-unit-cell.

[a]: N. A.=Not available. [b]: The electrolyte is 0.1 M KOH.

Bifunctional catalysts	Substrate	Mass loading	E _{J=10}	Durability	References				
		(mg·cm ⁻²)	(V)	(h)					
RuS ₂ -500	СР	1.5	1.527	20	This work				
	Rı	ı or Pyrite-baseo	l catalysts						
RuP	Ni foam	0.21	1.61	12	Adv. Energy Mater.				
					2018 , 8, 1801478				
Ru-Ni SN	CFP	3	1.58	40	Nano Energy				
					2018 , 47, 1				
c-CoSe ₂	Carbon cloth	0.5	1.63	~2.8	Adv. Mater.				
					2016, 28, 7527				
NiS ₂ /CoS ₂ –O	CFP	N.A.	~1.77	21	Adv. Mater.				
					201 7, 29, 1704681				
V-doped NiS ₂	Ni foam	1	1.56	20	ACS Nano				
					2017, 11, 1157				
Pt-CoS ₂	Carbon cloth	0.5	1.55	20	Adv. Energy Mater.				
					2018, 8, 1800955				
$Co(S_xSe_{1-x})_2$	Ni foam	1	1.63	20	2017 27 1701008				
	201 7, 27, 1701008								
					Science				
NiFe LDH ^[c]	Ni foam	N. A.	1.70	10	2014 345 1593				
				50	Chem				
FeS NS	Iron foam	N.A.	1.65		2018 , 4, 1139				
					Nat. Commun.				
2-cycle NiFeO _x NP	CFP	3	1.51	200	2015 , 6, 7261				
	27.0			•	Nat. Commun.				
NiFe-MOF	Ni foam	N.A.	1.55	20	2017 , 8, 15341				
	E. 6.1		1.59	0.2	Nat. Commun.				
IFONFS-45	Fe foll	N.A.	1.58	8.3	2018 , 9, 1809				
NI: C	Ni foom	1.6	1 76	150	J. Am. Chem. Soc.				
IN1 ₃ 5 ₂	INI IOaiii	1.0	~1.70	150	2015 , 137, 14023				
CoO /NC	Ni foam	2	1 55	25	J. Am. Chem. Soc.				
	INI IOalli	2	1.55	2.3	2015 , 137, 2688				
CoP/NCNHP	Carbon paper	2	1 64	36	J. Am. Chem. Soc.				
	Carbon paper	2	1.04	50	2018 , 140, 2610				
CoMnCH	Ni foam	5.6	1.68	13	J. Am. Chem. Soc.				
					2017 , 139, 8320				
Holey NiCoP NS	Ni foam	N.A.	1.56	6	J. Am. Chem. Soc.				
					2018 , 140, 5241				
MoS ₂ /Ni ₃ S ₂	Ni foam	9.7	1.56	10	Angew. Chem. Int. Ed.				
					2016 , 55, 6702				

Table S5. Summary of overall-water-splitting performance in 1 M KOH of various state-of-the-art bifunctional electrocatalysts.

Ni ₅ P ₄	Ni foil	~3.5	~1.69	N. A.	Angew. Chem. Int. Ed. 2015 , 54, 12361
NiSe NW	Ni foam	2.8	1.63	20	Angew. Chem. Int. Ed. 2015 , 54, 9351
Co-P film	Cu foils	1	~1.64	24	Angew. Chem. Int. Ed. 2015 , 54, 6251
Hierarchical NiCo ₂ O ₄	Ni foam	1	1.65	15	Angew. Chem. Int. Ed. 2016 , 55, 6290
FeSe ₂	Ni foam	3	1.72	24	Angew. Chem. Int. Ed. 2017 , 56, 10506
CoSn ₂	Ni foam	3	1.55	16	Angew. Chem. Int. Ed. 2018 , 130, 15457
Porous MoO ₂	Ni foam	N. A.	1.53	24	<i>Adv. Mater.</i> 2016 , 28, 3785
Fe-CoP	Ti foil	1.03	1.6	40	<i>Adv. Mater.</i> 2017 , 29, 1602441
Ni@NC-800	Ni foam	0.8	1.6	50	<i>Adv. Mater.</i> 2017 , 29, 1605957
FePO ₄ NW	Ni foam	0.285	1.54	15	<i>Adv. Mater.</i> 2017 , 29, 1704574
Se-(NiCo)S _x /(OH) _x NS	Ni foam	N.A.	1.6	66	<i>Adv. Mater.</i> 2018 , 30, 1705538
Ni ₃ Se ₂ /Co ₉ S ₈	Exfoliated graphene foil	2.5	1.62	10	Nano Lett. 2017 , 17, 4202
Ni ₂ P NP	Ni foam	5	1.63	10	Energy Environ. Sci. 2015 , 8, 2347
Co _{0.85} Se/NiFe-LDH	Exfoliated graphene foil	4	1.67	10	<i>Energy Environ. Sci.</i> 2016 , 9, 478
ONPPGC/OCC	Carbon cloth	0.1	1.66	10	Energy Environ. Sci. 2016 , 9, 1210
NiFe LDH/Cu NW	Cu foam	2.2	1.54	48	<i>Energy Environ. Sci.</i> 2017 , 10, 1820
Ni-Co-P HNB	Ni foam	2	1.62	20	Energy Environ. Sci., 2018 ,11, 872
Ni-P(Ni ₁₁ (HPO ₃) ₈ (OH) ₆	Ni foam	3	1.65	100	Energy Environ. Sci., 2018 , 11, 1287
Co-S@CT	Carbon paper	0.32	1.74	~2 h	ACS Nano 2016 , 10, 2342
NiFeSP	Ni foam	4.2	1.58	20	ACS Nano 2017 , 11, 10303
CoP NR	Ni foam	6.2	1.62	32	<i>Adv. Funct. Mater.</i> 2015 , 25, 7337
NiFe/NiCo ₂ O ₄	Ni foam	N. A.	1.67	10	<i>Adv. Funct. Mater.</i> 2016 , 26, 3515

Ni-P	CFP	25.8	1.63	100	<i>Adv. Funct. Mater.</i> 2016 , 26, 4067
		N. A.		50	Adv. Funct. Mater.
NiCo ₂ S ₄ NW	Ni foam		1.63		2016, 26, 4661
		5 1.6	1.6	10	Adv. Funct. Mater.
$Co_9S_8(a)NOSC$	Ni foam		10	2017 , 27, 1606585	
NC NCC- NCC-N	Ni feam		1.50	50	Adv. Funct. Mater.
INC-INICU-INICUIN	INI Ioam	N.A.	1.56	50	2018 , 28, 1803278
Co/NBC-900	Ni foom	2	1 (9	(Adv. Funct. Mater.
	INI Ioam	2 1.68	0	2018 , 28, 1803278	
SNCE ND	Ni foom	2	1.69	30	Adv. Energy Mater.
SINCF-INK	INI IOam	5	1.08		2017 , 7, 1602122
E ₂ D2 ND	Ni foom	0.08 1.5	1.57	24	Adv. Energy Mater.
red2 nr	INI IOam		1.57		2017 , 7, 1700513
NiCoD filma	Scrap copper	2	1.50	24	Adv. Energy Mater.
NICOP IIIIIIS	wires	2	1.39		2018 , 1802615
NE E- DC (MY	Ni foom	2	1.65	50	Adv. Energy Mater.
M _{1-x} re _x r S ₃ @ MAche	INI IOdili	2	1.05		2018 , 8, 1801127
Ni Es O	Ni foam	(1.64	10	Adv. Energy Mater.
1112501-0		~0	1.04		2018 , 8, 1701347

Note: SN, Sandwiched nanoplate; NS, Nanosheet; NC, N-doped carbon; NCNHP, N-doped carbon nanotube hollow polyhedron; NW, Nanowire; NP, Nanopaticle; HNB, hollow nanobrick; CT, Carbon tube; NR, Nanorod; NOSC, N-, O-, and S-tridoped carbon;

[c]: The electrolyte is 1 M NaOH.

Supplementary References

- Schulze, M.; Lorenz, M.; Wagner, N.; Gülzow, E. XPS analysis of the degradation of Nafion. *Fresen. J. Anal. Chem.* 1999, 365, 106-113.
- [2] Tazi, B.; Savadogo, O. Parameters of PEM fuel-cells based on new membranes fabricated from Nafion®, silicotungstic acid and thiophene. *Electrochim. Acta* **2000**, *45*, 4329-4339.
- [3] Tang, X.; Li, Y.; Huang, X.; Xu, Y.; Zhu, H.; Wang, J.; Shen, W. MnO_x-CeO₂ mixed oxide catalysts for complete oxidation of formaldehyde: effect of preparation method and calcination temperature. *Appl. Catal. B: Environ* **2006**, *62*, 265-273.
- [4] Karthe, S.; Szargan, R.; Suoninen, E. Oxidation of pyrite surfaces: A photoelectron spectroscopic study. *Appl. Surf. Sci.* 1993, 72, 157-170.
- [5] Buckley, A. N.; Woods, R. The surface oxidation of pyrite. *Appl. Surf. Sci.* 1987, 27, 437-452.