Supplementary Information

3D printable robust shape memory PET copolyesters with fire safety via π -stacking and synergistic crosslinking

Lin Chen, Hai-Bo Zhao, Yan-Peng Ni, Teng Fu, Wan-Shou Wu, Xiu-Li Wang* and Yu-Zhong Wang*

Scheme S1 Synthesis process of phenylacetylene-phenylimide containing PEPN monomer.

Scheme S2 Synthesis process of phenylimide containing BN monomer.

Scheme S3 Synthesis process for model polymer PPN.

Scheme S4 Chemical structure of phenylimide-containing copolyester P(ET-*co*-BN)₂₀ (a) and phenylacetylene-containing copolyester P(ET-*co*-P)₂₀ (b).

Fig. S1 Structural characterization. (a) ¹H NMR spectrum of monomer PEPN. (b) ¹³C NMR spectrum of monomer PEPN. (c) FT-IR spectra of PET and P(ET-*co*-PN)₂₀; (d) ¹H NMR spectrum of P(ET-*co*-PN)₂₀.

Fig. S2 Structural characterization. (a) ¹H NMR spectrum of monomer BN. (b) ¹³C NMR spectrum of monomer BN. (c) FT-IR spectra of PET and P(ET-*co*-BN)₂₀; (d) ¹H NMR spectrum of P(ET-*co*-BN)₂₀.

Fig. S3 ¹H NMR spectrum of model polymer PPN

Fig. S4 DMA curves of shape memory effect for copolyesters P(ET-co-PN)_n

Fig. S5 Total ion chromatogram of P(ET-*co*-BN)₂₀ and P(ET-*co*-PN)₂₀ in the pyrolysis gas chromatography-mass spectrometry test.

Fig. S6 Combustion processes of PET, P(ET-*co*-BN)₂₀, P(ET-co-PN)₁₅ and P(ET-co-PN)₂₀ during LOI testing at different time.

Fig. S7 Heat release rate curves of PET and copolyesters P(ET-co-PN)_n in microcalorimetry test

Fig. S8 (a) High temperature early warning of the sensor in precombustion using a copper tube with a diameter of 2 mm and a thickness of 0.2 mm. (b) Realtime monitoring for the changes of the sensor using a copper tube with a diameter of 1 mm and a thickness of 0.2 mm

Sample	PEPN content [mol%]		$[\eta]$	N _t	N _a	ΔH_m	T_g	T_m	δ (MPa)d	3 [%]e
	theoretical	actual ^a	[uL g]	[/0]	[/0]	[* 5]	[0]	[0]	(ivii u)	[/0]
PET	-	-	0.62	-	-	48.6	73	254	61.8 ± 2.4	362 ± 110
$P(ET-co-PN)_5$	4.8	5.0	0.78	0.33	0.41	32.9	88	240	79.6 ± 2.4	311 ± 33
$P(ET-co-PN)_{10}$	9.1	9.5	0.73	0.59	0.58	17.2	92	229	82.5 ± 0.7	244 ± 35
$P(ET-co-PN)_{15}$	13.0	13.6	0.72	0.82	0.88	12.4	96	213	86.8 ± 2.1	172 ± 37
P(ET-co-PN) ₂₀	16.7	17.1	0.65	1.00	1.04	-	101	-	89.6 ± 3.1	41 ± 33

Table S1 Basic parameters of PET and P(ET-co-PN)_n

^a molar percentage of PEPN calculated by the integral area ratio of "a" peak and "e" peak in ¹H NMR

^b theoretical nitrogen content of the copolyesters

^c actual nitrogen content of the copolyesters determined by elemental analysis

^d Tensile strength

^e Elongation at break

Table S2 (Corresponding	microcalorimetry	testing data of P	ET and copolyesters	P(ET-co-PN)
------------	---------------	------------------	-------------------	---------------------	-------------

Sample	HRC (J g ⁻¹ k ⁻¹)	p-HRR (w g ⁻¹)	THR (kJ g ⁻¹)
PET	465	436	17.9
$P(ET-co-PN)_5$	329	310	13.3
P(ET- <i>co</i> -PN) ₁₀	261	244	12.7
P(ET- <i>co</i> -PN) ₁₅	231	216	11.6
P(ET- <i>co</i> -PN) ₂₀	210	193	11.0