SUPPLEMENTARY INFORMATION

Unique structured microspheres with multishells comprising graphitic carbon-coated Fe₃O₄ hollow nanopowders as anode materials for high-performance Li-ion batteries

Gi Dae Park^a, Jeong Hoo Hong^a, Dae Soo Jung^b Jong-Heun Lee^a, and Yun Chan Kang^{*a}

^aDepartment of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea, E-mail: yckang@korea.ac.kr; Fax: (+82) 2-928-3584

^bEnergy and Environmental Division, Korea Institute of Ceramic Engineering and Technology, Jinju 660-031, Republic of Korea.

Fig. S1 Morphologies of microspheres synthesized by spray drying process before and after post-treatment process. (a,b) as-prepared and (c,d) post-treated microspheres.

Fig. S2 Morphologies of pitch infiltrated Fe₂O₃ yolk-shell microspheres.

Fig. S3 Morphologies of microspheres formed after reduction process of pitch-infiltrated Fe₂O₃ yolk-shell microspheres at (a,b) 300 °C, (c,d) 400 °C, and (e,f) 500 °C.

Fig. S4 XRD patterns of microspheres obtained before and after reduction process at 300 (R300), 400 (R400) and 500 °C (R500).

Fig. S5 (a) Morphology and (b) XRD pattern of metallic Fe powders formed after reduction of Fe₂O₃ yolk-shell microspheres at 400 $^{\circ}$ C.

Fig. S6 XRD patterns of R300-O300, R400-O300, and R500-O300 microspheres.

Fig. S7 Morphologies of (a,b) R300-O300, (c,d) R400-O300, and (e,f) R500-O300 microspheres.

Fig. S8 XPS survey scan of Fe₃O₄-GC (R400-O300) microspheres.

Fig. S9 (a) N_2 gas adsorption and desorption isotherm and (b) BJH pore-size distribution of Fe₃O₄-GC (R400-O300) and bare Fe₂O₃ microspheres.

Fig. S10 CV curves of yolk-shell structured Fe_2O_3 microspheres.

Fig. S11. (a) Areal and (b) gravimetric capacities of yolk-shell structured Fe₃O₄-GC composite microspheres at the different active materials mass loadings on the electrode.

Fig. S12. Charge-discharge curves at different rates $(0.5, 1, 2, 5, 10, 15, \text{ and } 20 \text{ A g}^{-1})$ of yolk-shell structured Fe₃O₄-GC composite and Fe₂O₃ microspheres.

Fig. S13. The 2^{nd} , 50^{th} , 100^{th} , 200^{th} , 300^{th} , 400^{th} , 500^{th} , and 1000^{th} charge-discharge curves obtained during the long-term cycling test of yolk-shell structured Fe₃O₄-GC composite microspheres.

Fig. S14. TEM images and SAED patterns of yolk-shell strucutred Fe₃O₄-GC composite at fully (a,c,e,g) discharged and (b,d,f,h) charged states after 100 cycles : (a-d) TEM images, (e,f) HR-TEM images, (g,h) SAED pattern.

Table	S1.	Electrochemical	properties	of	various	Fe ₃ O ₄	materials	applied	as	lithium-ion
batteri	es re	ported in the prev	vious literatu	ires						

Materials	Current rate	Discharge capacity [mA h g ⁻¹] and (cycle number)	Rate capacity [mA h g ⁻¹] (current rate)	Ref
Graphene-wrapped Fe ₃ O ₄	$0.7 A g^{-1}$	~600 (100)	~600 (1.75 A g ⁻¹)	[S1]
Carbon coated Fe ₃ O ₄ nanospindles	$0.4 \text{A} \text{g}^{-1}$	530 (80)	190 (4.0 A g ⁻¹)	[S2]
Carbon-encapsulated Fe ₃ O ₄ nanoparticles	$5.0 \mathrm{A g^{-1}}$	836 (350)	297 (20.0 A g ⁻¹)	[\$3]
Dual layers N-doped carbon@ mesoporous carbon@Fe ₃ O ₄ nanoparticle	2.0 Ag^{-1}	576 (500)	322 (5.0 A g ⁻¹)	[S4]
Fe ₃ O ₄ -embedded and N-doped hierarchically porous carbon nanospheres	$1.0 \mathrm{A g^{-1}}$	581 (400)	290 (10.0 A g ⁻¹)	[\$5]
N-doped dual carbon-confined 3D architecture rGO/Fe ₃ O ₄ /AC	$5.0 \mathrm{A g^{-1}}$	~500 (500)	437 (10.0 A g ⁻¹)	[S6]
Porous Fe ₃ O ₄ /carbon microspheres	$1.0 \mathrm{A g^{-1}}$	746 (300)	$410 (5.0 \text{ A g}^{-1})$	[S7]
Pomegranate-like, carbon-coated Fe ₃ O ₄	$5.0 \mathrm{A g^{-1}}$	520 (1000)	416 (10.0 A g ⁻¹)	[S 8]
Neuron-inspired Fe ₃ O ₄ -conductive carbon	$1.0 \mathrm{A g^{-1}}$	971 (1000)	206 (8.0 A g ⁻¹)	[\$9]
Macroporous Fe ₃ O ₄ @C	$2.0 \mathrm{A g^{-1}}$	645 (1000)	300 (10.0 A g ⁻¹)	[S10]
Yolk–shell-structured microsphere with multishells of hollow Fe ₃ O ₄ nanopowders covered with GC	2.0 A g ⁻¹	1018 (1000)	649 (20.0 A g ⁻¹)	Our work

References

[S1] G. Zhou, D.-W. Wang, F. Li, L. Zhang, N. Li, Z.-S. Wu, L. Wen, G. Q. Lu, H.-M. Cheng, *Chem. Mater.*, 2010, **22**, 5306-5313.

[S2] W.-M. Zhang, X.-L. Wu, J.-S. Hu, Y.-G. Guo, L.-J. Wan, *Adv. Funct. Mater.*, 2008, 18, 3941-3946.

[S3] C. He, S. Wu, N. Zhao, C. Shi, E. Liu, J. Li, ACS Nano, 2013, 7, 4459-4469.

[S4] B. Zhu, G. Guo, G. Wu, Y. Zhang, A. Dong, J. Hu, D. Yang, *J. Alloys Compd.*, 2019, **775**, 776-783.

[S5] J. Mao, D. Niu, N. Zheng, G. Jiang, W. Zhao, J. Shi, Y. Li, ACS Sustainable Chem. Eng.,

2019, **32**, 3424-3433.

[S6] R. Ding, J. Zhang, J. Qi, Z. Li, C. Wang, M. Chen, ACS Appl. Mater. Interfaces, 2018, **10**, 13470-13478.

[S7] W. Han, X. Qin, J. Wu, Q. Li, M. Liu, Y. Xia, H. Du, B. Li, F. Kang, *Nano Res.*, 2018, **11**, 892-904.

[S8] D. Han, G. Guo, Y. Yan, T. Li, B. Wang, A. Dong, *Energy Storage Mater.*, 2018, **10**, 32-39.

[S9] S.-M. Hao, Q.-J. Li, J. Qu, F. An, Y.-J. Zhang, Z.-Z. Yu, ACS Appl. Mater. Interfaces, 2018, 10, 17923-17932.

[S10] Z. Yan, X. Jiang, Y. Dai, W. Xiao, X. Li, N. Du, G. He, ACS Appl. Mater. Interfaces, 2018, **10**, 2581-2590.