Supporting Information

Expanded-Graphite Embedded in Lithium Metal as Dendrite-Free Anode of

Lithium Metal Batteries

Qiang Zhao ^{a, b}, Xiaoge Hao ^{a, b}, Shiming Su ^a, Jiabin Ma ^{a, b}, Yi Hu ^a, Yong Liu ^c,

Feiyu Kang ^{a, b} and Yan-Bing He ^{a,*}

^aShenzhen Geim Graphene Center, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China.

^bLaboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China.

^cSchool of Materials Science and Engineering, Henan University of Science and Technology, Collaborative Innovation Center of Nonferrous Metals of Henan Province, Luoyang, 471023, PR China

* Corresponding author. E-mail address: he.yanbing@sz.tsinghua.edu.cn (Y.-B. He)

Fig. S1 Characterization of EG. (a) Raman spectra and (b) N_2 adsorption and desorption isotherms.

Fig. S2 Optical photographs of (a) Li-EG after pressing, (b) Li-EG after heating at 200 °C and (c) Li foil after heating at 200 °C.

Fig. S3 SEM image of cross-section of the Li-EG anode (a), corresponding EDS mapping images of C (b), O (c) and overlapped elemental (d).

Fig. S4 Galvanostatic stripping/plating voltage profile of Li-EG/Li half-cell using Li-EG with the mass ratio of 1:3 (EG : Li) at 1 mA cm⁻² with a stripping/plating capacity of 1 mAh cm⁻².

Fig. S5 (a) The enlarged voltage profiles of the 100–120 h and 800–820 h of Fig. 3a. (b) The EIS of half-cells after 100 cycles at 1 mA cm⁻² and 1 mAh cm⁻².

Fig. S6 Morphology of anodes after stripping for 10 h at a current density of 1 mA cm⁻²:(a, b) Li foil and (c, d) Li-EG.

Fig. S7 SEM images of Li foil (a, b) and Li-EG (c, d) after the first stripping and plating for 20 h at a current density of 1 mA cm⁻².

Fig. S8 Charge-discharge voltage profiles at different rates of (a) Li||LFP and (b) Li-EG||LFP full cells.

Fig. S9 Voltage profiles of the first plating for the Li foil and Li-EG half-cell.

Sample	Test condition (mA cm ⁻² / mAh cm ⁻²)	Cycling time (h)	Reference
Li-EG	1/1	1000	
	1/3	800	This work
	10/1	300	
Lithium-graphite hybrid -	1/1.5	600	1
	5/1.5	60	
ZnO/carbon framework	1/1	400	
	10/1	40	2
	1/5	400	
OPA-Li-CNT anode	1/0.5	200	3
	3/0.5	200	
Li/CF composite anode -	1/1	1000	4
	5/5	90	
3D G/Li anode -	5/1	200 cycles	5
	10/1	70 cycles	
Li@3D-AGBN composite anode	0.5/1	400	
	5/1	120	6
	40/1	50	

Table S1. Summary of cycling performance of Li-C anodes in previous results and this work.

3D-HCFs@Li	1/1	1200	
	2/1	600	7
	2/2	300	
Straw-brick-like CFC/Li composite electrode _	0.5/1	200	
	1/1	200	8
	3/1	100	
Li-CNT-AB –	0.5/0.5	500	0
	3/1	100	9
Three-dimensional nitrogen-doped graphene – foam	1/2	800	10
	0.5/1	1000	10

References

- 1. S. Liu, X. Xia, S. Deng, L. Zhang, Y. Li, J. Wu, X. Wang and J. Tu, *Energy Storage Materials*, 2018, **15**, 31–36.
- L. Wang, X. Zhu, Y. Guan, J. Zhang, F. Ai, W. Zhang, Y. Xiang, S. Vijayan, G. Li, Y. Huang, G. Cao, Y. Yang and H. Zhang, *Energy Storage Materials*, 2018, 11, 191–196.
- 3. T. Kang, Y. Wang, F. Guo, C. Liu, J. Zhao, J. Yang, H. Lin, Y. Qiu, Y. Shen, W. Lu and L. Chen, *ACS Cent. Sci.*, 2019, **5**, 468–476.
- P. Shi, T. Li, R. Zhang, X. Shen, X. B. Cheng, R. Xu, J. Q. Huang, X. R. Chen, H. Liu and Q. Zhang, *Adv. Mater.*, 2019, **31**, 1807131.
- 5. W. Deng, X. Zhou, Q. Fang and Z. Liu, Adv. Energy Mater., 2018, 8, 1703152.
- P. Xue, S. Liu, X. Shi, C. Sun, C. Lai, Y. Zhou, D. Sui, Y. Chen and J. Liang, *Adv. Mater.*, 2018, 30, 1804165.
- L. Liu, Y.-X. Yin, J.-Y. Li, N.-W. Li, X.-X. Zeng, H. Ye, Y.-G. Guo and L.-J. Wan, *Joule*, 2017, 1, 563–575.
- 8. S. Liu, X. Xia, Z. Yao, J. Wu, L. Zhang, S. Deng, C. Zhou, S. Shen, X. Wang and J. Tu, *Small Methods*, 2018, **2**, 1800035.
- 9. F. Guo, Y. Wang, T. Kang, C. Liu, Y. Shen, W. Lu, X. Wu and L. Chen, *Energy Storage Materials*, 2018, **15**, 116–123.
- 10. Z. Li, X. Li, L. Zhou, Z. Xiao, S. Zhou, L. Li and L. Zhi, *Nanoscale*, 2018, **10**, 4675–4679.