Photo-enhanced Zn-air batteries with simultaneously highly efficient

in-situ H_2O_2 generation for wastewater treatment

Kun Wang^{a1}, Zhuohua Mo^{a1}, Songtao Tang^a, Mingyang Li^a, Hao Yang^a, Bei Long^a, Yi Wang^{b,*}, Shuqin Song^{a,*}, Yexiang Tong^{a,*}

^a MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, School of Materials Science and Engineering, School of Chemical Engineering and Technology, Sun Yatsen University, Guangzhou 510275, P. R. China
^b School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R.

China

Figure S1 line profiles corresponding to the inset AFM topography image of the pTTh.

Figure S2 N₂ adsorption-desorption isotherms (a) and the corresponding pore size distribution (b) of the as-prepared pTTh.

Figure S3 Multicycle cyclic voltammetry electropolymerization of TTh monomer in acetonitrile containing 20 mM monomer and 0.1 M LiClO₄.

Figure S4 the digital photo of the as-prepared CP@pTTh electrode.

Figure S5 the mass of the CP and CP@pTTh, respectively.

Figure S6 TEM (a) and HR-TEM (b) images of the as-prepared pTTh.

Figure S7 SEM images of the pTTh before (a) and after (b) the aging test.

Figure S8 polarization and power density curves of a photo-enhanced Znair battery using the CP@pTTh as air electrode (size: 2.0 cm×2.5 cm; mass loading: ~1.3 mg pTTh/cm²).

Figure S9 XPS survey spectrum of the pTTh.