Supporting Information

Controllably Oxygen-Incorporated Interlayer-Expanded ReS₂ Nanosheets Deposited on Hollow Mesoporous Carbon Spheres for Improved Redox Kinetics of Li-Ion Storage

Ya Ping Yan^{a,b}, Hao Li^c, Ying Bo Kang^d, Bo Wang^d, Tae Yil Eom^e, Kyeong Youn Song^e, Srijita Nundy^a, Min Woo Cho^a, Chi Won Kang^d, Puritut Nakhanivej^a, Jin Yong Lee^c, Hoo Jeong Lee^{a,e*} and Ho Seok Park^{d,e*}

^aSchool of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Republic of Korea

^bDepartment of Physics and Institute of Basic Science, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea

^cDepartment of Chemistry, Sungkyunkwan University, Suwon 16419, Korea

^dSchool of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 440-746, Republic of Korea

^eSKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon, South Korea

^{*}Corresponding author: Email: hlee@skku.edu and phs0727@skku.edu

Figure S1. SEM images of the SiO₂@SiO₂/RF carbon sphere.

Figure S2. Schematic illustration of the synthesis process with expanded interlayer.

Figure S3. SEM images of the HMCS.

Figure S4. TEM image of the HMCS.

Figure S5. SEM images of the O-ReS₂ powder.

Figure S6. TEM images of the O-ReS₂ powder.

Figure S7. (a,b) HR-TEM images of the nanocomposite with only DI water solvent. (c,d) HR-TEM images of the nanocomposite with 180 $^{\circ}$ C reaction temperature.

Figure S8. XPS data of the composite. Insert table shows the O ratio.

Figure S9. (a,b) XPS of the HMCS with same hydrothermal process without the Reprecursors and (c) C1s of the O-ReS₂@HMCS-150.

Figure S10. XPS of the O-ReS₂ powder with same hydrothermal process without HMCS.

Figure S11. N₂ adsorption/desorption isotherms of (a) MHCS and (b) O-ReS₂@HMCS-150. Insert is the corresponding pore size distribution profile.

Figure S12. CV curves of the O-ReS₂ powder.

Figure S13. Cycling stability of the HMCS and O-ReS₂ powder.

Figure S14. (a) EDX mapping and (b, c) HR-TEM images of the cycled O-ReS₂@HMCS-150 electrode.

Figure S15. The linear fits of the Z_{real} vs. $\omega^{-1/2}$ curves in the low-frequency region.

The Li-ions diffusion coefficient (D_{Li}) can be calculated based on the following equation [1]

$$D_{Li} = \frac{R^2 T^2}{2A^2 n^4 F^4 C^2 \sigma^2} \tag{1}$$

Here, *R* is the gas constant, *T* is the absolute temperature, *A* is the surface area of the cathode, n is the number of electrons per molecule attending the electronic transfer reaction, *F* is Faraday constant, *C* is the concentration of lithium ion, and σ is the Warburg coefficient associated with the slope of the linear fittings in the low frequency region. σ has the relationship with Z_{re} according to equation: [1]

$$Z_{re} = R_s + R_f + \sigma \omega^{-1/2} \qquad (2)$$

So the value of σ is the slope of the graph of Z_{re} against $\omega^{-1/2}$ in the low frequency region.

	1			
Sample	Re	S	С	0
O-ReS ₂ @HMCS-150	13.06	28.74	41.78	16.41
HMCS with hydrothermal	-	1.13	91.49	5.18
process				

Table S1. Elemental ratios of the samples.

References:

[1] S. Gong, G. Zhao, P. Lyu, K. Sun, A Pseudolayered MoS₂ as Li-Ion Intercalation Host with Enhanced Rate Capability and Durability, Small. 14 (2018) 1803344.