Supporting Information

Unravelling the Impact of Electrolyte Nature on Sn₄P₃/C Negative Electrodes for Na-ion

Batteries

Juan Luis Gómez-Cámer^{1,*}, Begoña Acebedo¹, Nagore Ortiz-Vitoriano^{1,2}, I. Monterrubio¹, Montserrat Galcerán¹, Teófilo Rojo^{1,3,*}

1 CIC EnergiGUNE, Albert Einstein 48, Technology Park of Álava, 01510 Miñano (Álava), Basque Country, Spain

2 IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain

3 Inorganic Chemistry Department, University of the Basque Country UPV/EHU, P.O.

Box 644, 48080, Bilbao, Spain

Figure S1. Derivative curves of the five initial charge/discharge cycles of Sn_4P_3/C electrodes cycled in a) $NaClO_4/EC:PC$, b) $NaClO_4/EC:PC:FEC$, c) $NaPF_6/EC:PC$, d) $NaPF_6/EC:PC:FEC$, e) $NaPF_6/DEGDME$ and f) $NaPF_6/DEGDME:FEC$ electrolyte.

Figure S2. Galvanostatic curves of the 34th and 44th cycle at 1 A g^{-1} and 2 A g^{-1} of the Sn₄P₃/C electrodes in (a) 1M NaClO₄/EC:PC:FEC and (b) 1M NaPF₆/DEGDME electrolytes.

Figure S3. SEM images of Sn_4P_3/C electrodes after 100 charge/discharge cycles in a) NaClO₄/EC:PC, b) NaClO₄/EC:PC:FEC, c) NaPF₆/EC:PC, d) NaPF₆/EC:PC:FEC, e) NaPF₆/DEGDME and f) NaPF₆/DEGDME:FEC electrolytes.

Figure S4. X-ray diffractograms of the Sn_4P_3/C electrodes after 100 charge/discharge cycles in the different electrolytes. The green bars indicate the position of the most intense peaks of the t-Sn reference.

Figure S5. SEM (a) and BSE (b) images of Sn_4P_3/C electrode after 100 cycles in $NaPF_6/DEGDME$ electrolyte. The heavier elements are shown as brighter spots in the BSE images.

Figure S6. Galvanostatic curves of the 1st, 2nd, 5th, 10th, 50th and 100th charge/discharge cycles of Sn₄P₃/C electrodes cycled in a) NaClO₄/EC:PC, b) NaClO₄/EC:PC:FEC, c) NaPF₆/EC:PC, d) NaPF₆/EC:PC:FEC, e) NaPF₆/DEGDME and f) NaPF₆/DEGDME:FEC electrolyte.

Figure S7. Electrochemical impedance spectroscopy of the Sn_4P_3/C electrodes cycled in the different electrolytes after the 1st cycle in the discharged (desodiated) state. The two insets show the equivalent circuit used for fitting the spectra and a zoom of the high frequency part.

Figure S8. Electrochemical impedance spectroscopy of the Sn_4P_3/C electrodes cycled in $NaPF_6/DEGDME$:FEC electrolyte after the 1st, 5th, 20th and 50th in the discharged (desodiated) state. Inset shows a zoom of the high and middle frequency part.

Figure S9. Electrochemical impedance spectroscopy of the Sn_4P_3/C electrodes cycled in $NaClO_4/EC:PC$ (a, b) and $NaPF_6/EC:PC$ (c, d) electrolytes after the 1st, 5th, 20th and 50th in the discharged (desodiated) state. Images b and d are zooms of the high and middle frequency part of figures a and c, respectively.

Figure S10. Electrochemical impedance spectroscopy of the Sn_4P_3/C electrodes cycled in $NaClO_4/EC:PC:FEC$ (a, b) and $NaPF_6/EC:PC:FEC$ (c, d) electrolytes after the 1st, 5th, 20th and 50th in the discharged (desodiated) state. Images b and d are zooms of the high and middle frequency part of figures a and c, respectively.

Figure S11. Coulombic efficiency of the Sn_4P_3 @C electrodes cycled in $NaClO_4/EC:PC:FEC$, $NaPF_6/EC:PC:FEC$ and $NaPF_6/DEGDME$ electrolytes.

Synthesis method	Material	Electrode	Electrolyte	Voltage	Reversible specific	Initial	Capacity retention (%,	Ref.
		material/cond.		vs. Na ⁺ /Nal	density)	efficiency [%]	II Cycles) -	
		add/binder) [%]			[mAh g ⁻¹ (mA g ⁻¹)]			
High energy mechanical milling	Sn ₄ P ₃	70/10/20 (a.m./Super P/PAA)	1M NaClO ₄ in EC:DEC (1:1) +	1.5 - 0	833 (100) without FEC ^a	~84% without FEC	~100%, 100 cy.	[1]
			5% FEC		718 (100) with FEC ^a	~79% with FEC		
High energy mechanical milling	Sn ₄ P ₃ /C (70/30)	80/10/10 (a.m./Super P/CMC)	1M NaPF ₆ in EC:DEC (1:1) + 5% FEC	2-0	816 (50) ^a 650 (100) ^b 560 (200) ^b 435 (500) ^b 240 (1000) ^b	77.3%	86%, 150 cy.	[2]
Low energy ball milling	Sn _{4+x} P ₃ @amorphous Sn-P	70/10/20 (a.m./carbon black/CMC)	1M NaClO ₄ in EC:DEC (1:1) + 5% FEC	1.5 - 0	349 (1000)* 892 (100) a 543 (100) b 478.8 (200) b 423.3 (500) b 317.7 (1000) b 245.2 (2000) b 165.0 (5000) b 58.2 (10000) b	86.6%	72.1%, 100 cy.	[3]
Hydrothermal method	Yolk-shell Sn ₄ P ₃ @C (10% C)	70/20/10 (a.m./carbon black/PVDF)	1M NaClO ₄ in PC + 5% FEC	2-0.01	711 (100) ^a 648 (200) ^b 586 (400) ^b 523 (800) ^b 455 (1500) ^b 379 (3000) ^b	43.8%	65.2%, 50 cy. @100 mA g ⁻¹ / 20%, 400 cy. @1500 mA g ⁻¹	[4]
High energy mechanical milling	Sn ₄ P ₃	70/10/20 (a.m./Super P/PAA)	1M NaClO ₄ in EC:PC (1:1) / + FEC / + FEC +TMSP	1.5 – 0	1131 / 720 / 852 (C/20) °	~71% / 79.6% / 81.2%	30.3% / 76.9% / 92.3%, 50 cy. @C/10 °	[5]
Solvothermal method	Sn ₄ P ₃	70/20/10 (a.m./carbon black/PVDF)	1M NaClO ₄ in EC:DEC (1:1) + 5% FEC	3 - 0.01	647 (50)	52.8%	24.9%, 10 cy.	[6]

 $Table \ S1. \ Comparison \ of \ the \ electrochemical \ performance \ of \ our \ Sn_4P_3 @C \ electrodes \ and \ the \ data \ obtained \ from \ the \ literature.$

Solvothermal	Sn ₄ P ₃ /rGO, 10.4% C	80/10/10 (a.m./carbon	1M NaClO ₄ in PC	3-0.01	775 (100)	46.6%	84.6%, 100 cy.	[7]
method		black/PVDF)	+ 5% FEC					
Solvothermal	Sn ₄ P ₃	60/20/20 (a.m./Super	1M NaClO ₄ in	1.5 - 0.001	510 (100)	59%	83%, 100 cy.	[8]
method		P/CMC-PAA)	EC:PC (1:1) + 5%		464 (5000)			
			FEC					
High energy	Sn ₄ P ₃ / 0–30% TiC	80/10/10	1M NaClO ₄ in PC	1.5 - 0.01	532.3, 0%TiC (100)	85.5% (0%TiC)	17.4%, 100 cy. (0% TiC)	[9]
mechanical milling		(a.m./acetylene	+ 5% FEC		~495, 10%TiC (100)	84.3% (10%TiC)	41.1%, 100 cy. (10% TiC)	
		black/CMC)			~420, 20%TiC (100)	84.1% (20%TiC)	82.9%, 100 cy. (20% TiC)	
					~315, 30%TiC (100)	80.8% (30%TiC)	94.5%, 100 cy. (30% TiC)	
Purchased (Alfa-	Commercial	80/10/10 (a.m./carbon	1M NaClO ₄ in	1.5 - 0.01	520 - 501 (100)	73.9%	90.2%, 120 cy.	[10]
Aesar)	Sn ₄ P ₃ /MWCNT	black/Na-alginate)	FEC/DMC (1:1)		500 (200)			
	20%				464 (300)			
					397 (500)			
					259 (1000)			
Aerosol spray	Sn ₄ P ₃ @C, 24% C	70/15/15 (a.m./carbon	1M NaPF ₆ in:	1.5 – 0	1)~770 (100)	1) 90.7% @50	1) 82%, 120 cy. @100	[11]
pyrolysis +	_	black/Na-alginate)	1) DME		2)~600 (100)	mA g ⁻¹	mA g ⁻¹	
thermal treatment			2) EC:DMC (1:1)		3)~700 (100)	2) 72.7% @50	2) 54%, 110 cy. @100	
			3) EC:DMC (1:1) +			mA g ⁻¹	mA g ⁻¹	
			5% FEC			3) 59.8% @50	3) 95%, 120 cy. @100	
						mA g ⁻¹	mA g ⁻¹	
Ball milling	Sn ₄ P ₃ /C, 12.5% C	80/10/10 (a.m./Super	1M NaClO ₄ in PC	2-0.01	~600 (100)	~82% @100 mA	~77%, 200 cy. @500 mA	[12]
		P/CMC)	+ 5% FEC		~510 (200)	g-1	g-1	
					~450 (500)		~65%, 200 cy. @1000 mA	
					~385 (1000)		g-1	
					~255 (2000)			
Solution chemistry	Sn ₄ P ₃	70/20/10	1M NaClO ₄ in PC	2-0	749 (50)	72.7%	92%, 80 cy. @200 mA g ⁻¹	[13]
method		(a.m./MWCNT/CMC)	+ 5% FEC		659 (100)		82%, 50 cy. @500 mA g ⁻¹	
					591 (200)			
					501 (500)			
					399 (1000)			
Hydrothermal	Sn ₄ P ₃ -C, 19.4% C	70/20/10 (a.m./Super	1M NaClO ₄ in	2-0	721 (200)	60%	90.1%, 50cy.	[14]
method		P/PAA)	EC:DMC + 5%		680 (500)			
			FEC		495 (1000)			
					390 (2000)			
					260 (4000)			

Solution chemistry + annealing + solvothermal	Sn4P3@C yolk- shell, n.d. %C	70/20/10 (a.m./acetylene black/PVDF)	1M NaClO ₄ in PC + 5% FEC	2-0.01	771 (100) 725 (200) 642 (500) 583 (1000) 508 (2000)	63.7%	90.9%, 50 cy.	[15]
Ball milling	Sn ₄ P ₃ @C, 6% C	80/10/10 (a.m./Super C65/CMC)	1M NaClO ₄ in EC:PC (1:1) + 5% FEC	1.5 - 0.005	507 (100) 432 (200) 340 (500) 270 (1000) 180 (2000) 80 (5000) 10 (10000)	82.7%	44.9%, 100 cy.	Our work
Ball milling	Sn ₄ P ₃ @C, 6% C	80/10/10 (a.m./Super C65/CMC)	1M NaPF ₆ in EC:PC (1:1) + 5% FEC	1.5 - 0.005	505 (100) 432 (200) 345 (500) 270 (1000) 175 (2000) 85 (5000) 15 (10000)	80.7%	58.6%, 100 cy.	Our work
Ball milling	Sn ₄ P ₃ @C, 6% C	80/10/10 (a.m./Super C65/CMC)	1M NaPF ₆ in DEGDME	1.5 - 0.005	820 (100) 740 (200) 660 (500) 570 (1000) 200 (2000) 170 (5000) 75 (10000)	90.1%	43.1%, 100 cy.	Our work

^a 1st cycle reversible specific charge

^b average specific charge at the given current density

^c current density used to calculate C-rate was not specified

^d Capacity retention at the lower current density, unless otherwise stated

References (Supporting information)

- Y. Kim, Y. Kim, A. Choi, S. Woo, D. Mok, N.-S. Choi, Y.S. Jung, J.H. Ryu, S.M. Oh, K.T. Lee, Tin Phosphide as a Promising Anode Material for Na-Ion Batteries, Adv. Mater. 26 (2014) 4139–4144. doi:10.1002/adma.201305638.
- [2] J. Qian, Y. Xiong, Y. Cao, X. Ai, H. Yang, Synergistic Na-Storage Reactions in Sn 4 P 3 as a High-Capacity, Cycle-stable Anode of Na-Ion Batteries, Nano Lett. 14 (2014) 1865–1869. doi:10.1021/nl404637q.
- [3] W. Li, S.-L. Chou, J.-Z. Wang, J.H. Kim, H.-K. Liu, S.-X. Dou, Sn 4+x P 3 @ Amorphous Sn-P Composites as Anodes for Sodium-Ion Batteries with Low Cost, High Capacity, Long Life, and Superior Rate Capability, Adv. Mater. 26 (2014) 4037–4042. doi:10.1002/adma.201400794.
- [4] J. Liu, P. Kopold, C. Wu, P.A. van Aken, J. Maier, Y. Yu, Uniform yolk-shell Sn 4 P 3 @C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries, Energy Env. Sci. 8 (2015) 3531–3538. doi:10.1039/C5EE02074C.
- [5] J.Y. Jang, Y. Lee, Y. Kim, J. Lee, S.-M. Lee, K.T. Lee, N.-S. Choi, Interfacial architectures based on a binary additive combination for high-performance Sn₄ P₃ anodes in sodium-ion batteries, J Mater Chem A. 3 (2015) 8332–8338. doi:10.1039/C5TA00724K.
- [6] S. Liu, H. Zhang, L. Xu, L. Ma, X. Chen, Solvothermal preparation of tin phosphide as a long-life anode for advanced lithium and sodium ion batteries, J. Power Sources. 304 (2016) 346–353. doi:10.1016/j.jpowsour.2015.11.056.
- [7] Q. Li, Z. Li, Z. Zhang, C. Li, J. Ma, C. Wang, X. Ge, S. Dong, L. Yin, Low-Temperature Solution-Based Phosphorization Reaction Route to Sn 4 P 3 /Reduced Graphene Oxide Nanohybrids as Anodes for Sodium Ion Batteries, Adv. Energy Mater. 6 (2016) 1600376. doi:10.1002/aenm.201600376.
- [8] H.-S. Shin, K.-N. Jung, Y.N. Jo, M.-S. Park, H. Kim, J.-W. Lee, Tin phosphide-based anodes for sodium-ion batteries: synthesis via solvothermal transformation of Sn metal and phase-dependent Na storage performance, Sci. Rep. 6 (2016). doi:10.1038/srep26195.
- [9] W. Wang, J. Zhang, D.Y.W. Yu, Q. Li, Improving the cycling stability of Sn 4 P 3 anode for sodium-ion battery, J. Power Sources. 364 (2017) 420–425. doi:10.1016/j.jpowsour.2017.08.060.
- [10] J. Mao, X. Fan, C. Luo, C. Wang, Building Self-Healing Alloy Architecture for Stable Sodium-Ion Battery Anodes: A Case Study of Tin Anode Materials, ACS Appl. Mater. Interfaces. 8 (2016) 7147–7155. doi:10.1021/acsami.6b00641.
- [11]X. Fan, T. Gao, C. Luo, F. Wang, J. Hu, C. Wang, Superior reversible tin phosphide-carbon spheres for sodium ion battery anode, Nano Energy. 38 (2017) 350–357. doi:10.1016/j.nanoen.2017.06.014.
- [12] W. Zhang, J. Mao, W.K. Pang, Z. Guo, Z. Chen, Large-scale synthesis of ternary Sn 5 SbP 3 /C composite by ball milling for superior stable sodium-ion battery anode, Electrochimica Acta. 235 (2017) 107–113. doi:10.1016/j.electacta.2017.03.093.
- [13] D. Lan, W. Wang, L. Shi, Y. Huang, L. Hu, Q. Li, Phase pure Sn 4 P 3 nanotops by solution-liquid-solid growth for anode application in sodium ion batteries, J. Mater. Chem. A. 5 (2017) 5791–5796. doi:10.1039/C6TA10685D.
- [14] J. Choi, W.-S. Kim, K.-H. Kim, S.-H. Hong, Sn 4 P 3 –C nanospheres as high capacitive and ultra-stable anodes for sodium ion and lithium ion batteries, J. Mater. Chem. A. (2018). doi:10.1039/C8TA05586F.
- [15]L. Ma, P. Yan, S. Wu, G. Zhu, Y. Shen, Engineering tin phosphides@carbon yolk-shell nanocube structures as a highly stable anode material for sodium-ion batteries, J. Mater. Chem. A. 5 (2017) 16994–17000. doi:10.1039/C7TA04900E.