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1. Phase-field dielectric breakdown model

By drawing an analogy between dielectric breakdown and mechanical fracture, a
scalar spatially and temporally dependent damage field s (x, #) is introduced to
characterize the breakdown process of a selected region of MLCCs.!3 The value of s
varies from 1 to 0, representing the intact state and the fully damaged state, respectively.
The fully damaged material becomes conductive. Numerically, a large but finite
permittivity 80/ " is taken for such material part, where e’ is the initial permittivity and
1 is a small enough number. For any other intermediate state of dielectric layer material,

the permittivity is interpolated by
f(s)+n’

&(s) (1)

3 4
where f () = 4s” - 35" Breakdown happens if the process decreases the total potential

energy of the system,



[s,¢] = f[Wes(E,s) + Wy(s) + W, (Vs)]dV, @)
Q
€
W, (Es)=--E-E
where is the complementary electrostatic energy per unit volume,

Wq(s) =W [1-f(s)] is the breakdown energy function with W representing the

r
W,(Vs) =-Vs-Vs
critical density of electrostatic energy, 4 is the gradient energy term

to regulate sharp phase boundaries. Notably, the material parameter I' is approximately
the breakdown energy. According to linear kinetic law: ds/0t =-méIl/8s, the
evolution equation for breakdown variable s can be obtained after substituting in

detailed forms of the energy functions:

10s e'(s) _ ' r_,
— = Ve VoW S () +5Vs. 3)

Here, mobility m is a material parameter that indicates the speed of breakdown
propagation in dielectric layers of MLCCs. By normalizing all lengths by /, energy

. . 2 . . /0 .
densities by WC, time by {"/mI’ and electric potential by ['/€", the final normalized

governing equations of dimensionless form can be written as:

_ 1
V- |l——Va|=0,
[f(s)+n ¢] )
s f(s) - __ . 1_,
—=— 1 Ve-Vop+ + Vs,
2 4T ¢-VP+[f(s)+ Vs (5)

in which the corresponding quantities are symbolized with over-bars. The dielectric
breakdown behavior of MLCCs can be simulated by implementing the normalized
governing equations (4) and (5) into COMSOL Multiphysics platform. The voltage
between two electrodes is applied quasi-statically by controlling the total charge

accumulation of the negative electrode.



2. Microstructure and electrical properties of MLCCs sintered with various first-

step heating rate

Figure S1. Large-view cross-sectional SEM images of the MLCCs sintered with the
first-step heating rate of (a) 4 °C/min, (b) 40 °C/min, in which the pores and

discontinuity of internal electrodes can be distinguished more clearly.
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Figure S2. Hysteresis loops of MLCC:s sintered with the first-step heating rate of (a) 4

°C/min, (b) 20 °C/min, (c) 40 °C/min, measured under various applied electric field at



1Hz.
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Figure S3. The current-electric-field relation of MLCCs sintered with the first-step

heating rate of (a) 4 °C/min, (b) 20 °C/min, (c) 40 °C/min, measured under various

applied electric field at 1Hz, corresponding to Figure S2.
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Figure S4. The temperature-dependent unipolar hysteresis loop the MLCCs sintered

with the first-step heating rate of (a) 4 °C/min, (b) 20 °C/min, (¢) 40 °C/min, measured

under the maximum electric field of 500 kV/cm at 1 Hz.
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Figure S5. The temperature-dependent current-electric-field relation the MLCCs
sintered with the first-step heating rate of (a) 4 °C/min, (b) 20 °C/min, (c) 40 °C/min,
measured under the maximum electric field of 500 kV/cm at 1 Hz, corresponding to

Figure S4.

Table S1. The insulation resistivity of the MLCCs with various first-step heating rate

of 4 °C/min (MLCC-4), 20 °C/min (MLCC-20) and 40 °C/min (MLCC-40).

Samples Insulation resistivity ( X 101! £ 1)
MLCC-4 5.92
MLCC-20 11.6
MLCC-40 63.6

3. Two-step sintering method
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Figure S6. The two-step sintering schedule of MLCCs with the first-step heating rate

of 4 °C/min, 20 °C/min and 40 °C/min, respectively.
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