Supporting Information

High-performance supercapacitor energy storage using carbon material derived from

lignin by bacterial activation before carbonization

Kejing Zhang,^a Mingren Liu,^a Tingzheng Zhang,^a Xiaoye Min,^a Zhongren Wang,^a

Liyuan Chai,^{a,b} and Yan Shi,*a,b

^a School of Metallurgy and Environment, Central South University, Changsha 410083,

P.R. China

^b Chinese National Engineering Research Center for Control & Treatment of Heavy

Metal Pollution, Changsha 410083, P.R. China

*Responding author: <u>shiyzyrs@csu.edu.cn</u>

Table

carbons				
Chemical composition (at%)	AL	BAL-9	ALC	BALC-9
С	61.18	57.85	68.88	90.15
Ο	38.82	42.15	31.12	9.85

Table S1 Chemical compositions of different lignin precursors and lignin-derived carbons

	-P		
Labels	$\delta_C / \delta_H \ (ppm)$	Assignments	
Lignin cross-signals:			
OCH ₃	56.2/3.73	C–H in methoxyls	
A_{γ}	59.8/3.37	C_{γ} - H_{γ} in β -O-4' substructures (A)	
C_{γ}	63.6/3.89	C_{γ} -H _{γ} in phenylcoumaran (C)	
\mathbf{I}_{γ}	60.2/4.03	C_{γ} -H _{γ} in cinnamyl alcohol end-groups (I)	
A_{lpha}	72.2/4.87	C_{α} - H_{α} in β -O-4' substructures (A)	
$A_{\beta}(G)$	86.5/4.11	C_{β} -H _{β} in β -O-4' linked to G (A)	
\mathbf{B}_{a}	85.4/4.49	C_{α} -H _{α} in β - β' (resinol) (B)	
$A_{\beta}(S)$	86.8/3.98	C_{β} -H _{β} in β -O-4' linked to S (A)	
S _{2,6}	104.2/6.70	C ₂ -H ₂ and C ₆ -H ₆ in syringyl units (S)	
S' _{2,6}	104.7/7.32	C_2 -H ₂ and C_6 -H ₆ in oxidized S units (S')	
G ₂	111.3/6.99	C ₂ -H ₂ in guaiacyl units (G)	
G ₅	115.9/6.79	C ₅ -H ₅ in guaiacyl units (G)	
$PCE_{3,5}$	115.3/6.70	$C_{3,5}$ - $H_{3,5}$ in <i>p</i> -coumarate	
G ₆	119.4/6.80	C ₆ -H ₆ in guaiacyl units (G)	
FA_6	122.5/7.12	C ₆ -H ₆ in ferulate	
H _{2,6}	128.6/7.23	C _{2,6} -H _{2,6} in H units (H)	
PCE _{2,6}	130.4/7.52	$C_{2,6}$ -H _{2,6} in <i>p</i> -coumarate	

Table S2 Assignment of lignin and polysaccharide correlation signals in the HSQC spectra shown in Figure 3

Figure

Figure S1. SEM images of (a) the BALC-7 and (b) BALC-8

Figure S2. HRTEM image of the BALC-9

Figure S3. FT-IR spectra of the lignin precursors

Figure S5. Nyquist plots (inset: magnification of the Nyquist plot).

Figure S6. The long-term durability of the BALC-9 based electrode in a two-electrode system: (a) in 6M KOH, (b) in EMIM TFSI.

Figure S7. (a) Nyquist plot; (b) Bode plots of the BALC-9 based symmetrical supercapacitor.