Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supplementary Figures

Figure S1. Digital image of bare Ni foam (left) and SnS₂@Ni foam (right).

Figure S2. SEM images of (a) self-organized growth of SnS₂ nanoflowers in the presence of Ni foam, and (b) random growth of SnS₂ nanopetals in the absence of Ni foam.

Figure S3. TEM image of a SnS_2 nanoflower which is constructed from numerous nanopetals interconnected to each other at the center.

Figure S4. Raman spectrum of SnS₂@Ni foam.^[1]

Figure S5. (a) UV-vis spectra at various NH_3 concentrations after being incubated for 2 h at room temperature, and (b) the corresponding calibration curve.^[2]

Figure S6. UV-vis absorption spectra of the electrolytes (stained by Nessler's reagent) after 2 h electrolysis in Ar at -0.5 V *vs*. RHE, and in N₂ at open circuit.

Figure S7. ¹H NMR spectra for ¹⁵NH₄Cl, as well as the electrolytes after being electrolyzed in ¹⁵N₂ and argon, respectively.

Figure S8. (a) UV-vis spectra at various N_2H_4 concentrations after being incubated for 2 h at room temperature, and (b) the corresponding calibration curve.^[3]

Figure S9. UV-vis absorption spectra of the electrolytes (stained by Watt and Chrisp method) before and after 2 h electrolysis in N_2 at -0.5 V vs. RHE.

Figure S10. (a) UV-vis absorption spectra of the electrolytes (stained by Nessler's reagent) after electrolysis at -0.5 V *vs.* RHE for 2 h and (b) the corresponding NH₃ yields of SnS₂@Ni foam and bare Ni foam, respectively.

Figure S11. Long-term durability test of SnS_2 @Ni foam for NRR at -0.5 V vs. RHE for 18 h.

Figure S12. Comparison of NH₃ yields of SnS_2 @Ni foam after electrolysis at -0.5 V vs. RHE for 2 and 18 h, respectively.

Figure S13. SEM image of flower-like SnS_2 nanoarrays after the electrocatalytic test.

Figure S14. High-resolution (a) Sn 3d and (b) S 2p XPS spectra of SnS₂ nanoflowers after the electrocatalytic test. The two isolated peaks of the Sn 3d spectrum are located at 495.2 and 486.6 eV, corresponding to the Sn $3d_{3/2}$ and $3d_{5/2}$ orbitals of the Sn(IV) state. The two deconvoluted peaks of the S 2p spectrum are located at 162.0 and 160.7 eV, corresponding to the S $2p_{1/2}$ and $2p_{3/2}$ orbitals. These data are nearly identical to those of SnS₂ nanoflowers before the electrocatalytic test without obvious changes.

Figure S15. XRD pattern of SnS_2 @Ni foam after the electrocatalytic test, in which the (100), (102), (003), and (110) planes of hexagonal SnS_2 can also be seen without obvious changes.

Figure S16. UV-vis absorption spectra of the electrolytes (stained by Nessler's reagent) after 2 h electrolysis in ${}^{14}N_2$, ${}^{15}N_2$ and Ar at -0.5 V *vs*. RHE.

Figure S17. Ammonia yields and Faradaic efficiencies of $SnS_2@Ni$ foam electrolyzed in ${}^{14}N_2$ and ${}^{15}N_2$ at – 0.5 V *vs.* RHE for 2 h, respectively.

Figure S18. Top-view optimized structures of SnS_2 corresponding to each free energy profile as determined by DFT calculations.

Figure S19. Digital image of bare Ni foam (left) and ZnS@Ni foam (right).

Figure S20. XRD pattern of ZnS@Ni foam, in which three sharp peaks are attributed to the (111), (200), and (220) planes of highly crystalline Ni,^[4] while the other peaks are attributed to the (002), (101), (102), (103), and (112) planes of wurtzite ZnS.^[5]

Figure S21. High-resolution (a) Zn 2p and (b) S 2p XPS spectra of ZnS nanowires. The high-resolution Zn 2p spectrum shows a pair of strong peaks centered at 1044.4 and 1021.3 eV corresponding to Zn $2p_{1/2}$ and $2p_{3/2}$ orbitals, and the high-resolution S 2p spectrum shows two deconvoluted peaks at 163.6 and 162.5 eV attributed to S $2p_{1/2}$ and $2p_{3/2}$ orbitals.^[6]

Figure S22. SEM image of forest-like ZnS nanoarrays after the electrocatalytic test.

Catalyst	Electrolyte	Potential (vs. RHE)	V _{NH3} (×10 ⁻¹¹)	FE	Reference
SnS ₂ nanoflowers on Ni foam	0.1 M Na ₂ SO ₄	–0.5 V	93 mol s ⁻¹ cm ⁻²	11.2%	This work
MoS_2 nanosheets on carbon cloth	0.1 M Na ₂ SO ₄	–0.5 V	8.1 mol s ⁻¹ cm ⁻²	1.17%	<i>Adv. Mater.</i> 2018 , <i>30</i> , 1800191
Mo ₂ C@C nanosheets on carbon cloth	0.5 M Li ₂ SO ₄	-0.3 V ^a -0.2 V ^b	18.5 mol s ⁻¹ mg ⁻¹ ª	1.6% ^b	<i>Adv. Mater.</i> 2018 , <i>30</i> , 1803694
Mo₂C nanorods on glassy carbon electrode	0.1 M HCI	–0.3 V	62 mol s ⁻¹ cm ⁻²	8.13%	ACS Cent. Sci. 2019 , 5, 116
Ti ₃ C ₂ (MXene) on stainless steel mesh	0.5 M Li ₂ SO ₄	-0.1 V	7.7 mol s ⁻¹ cm ⁻²	4.62%	<i>Joule</i> 2019 , 3, 279
VN nanoparticles on carbon paper	$1 \text{ mM H}_2\text{SO}_4$	-0.2 V	50 mol s ⁻¹ cm ⁻²	6.5%	J. Am. Chem. Soc. 2018 , 140, 13387
VN nanowires on carbon cloth	0.1 M HCI	–0.3 V	25 mol s ⁻¹ cm ⁻²	3.58%	Chem. Commun. 2018 , 54, 5323
VN nanosheets on Ti mesh	0.1 M HCI	–0.5 V	8.4 mol s ⁻¹ cm ⁻²	2.25%	ACS Sustainable Chem. Eng. 2018 , 6, 9545
Mo₂N nanorods on glassy carbon electrode	0.1 M HCI	–0.3 V	46 mol s ⁻¹ cm ⁻²	4.5%	Chem. Commun. 2018 , 54, 8474
MoN nanosheets on carbon cloth	0.1 M HCI	–0.3 V	30.1 mol s ⁻¹ cm ⁻²	1.15%	ACS Sustainable Chem. Eng. 2018 , 6, 9550
Fe ₂ O ₃ @CNT on carbon paper	KHCO₃	–2.0 V	0.36 mol s ⁻¹ cm ⁻²	0.15%	Angew. Chem. Int. Ed. 2017 , 56, 2699
Bi ₄ V ₂ O ₁₁ /CeO ₂ on carbon paper	0.1 M HCI	-0.2 V	76 mol s ⁻¹ cm ⁻²	10.16%	Angew. Chem. Int. Ed. 2018 , 57, 6073
Fe_3O_4 nanorods on Ti mesh	0.1 M Na ₂ SO ₄	-0.4 V	5.6 mol s ⁻¹ cm ⁻²	2.6%	<i>Nanoscale</i> 2018 , <i>10</i> , 14386
SnO ₂ microparticles on carbon cloth	$0.1 \text{ M Na}_2\text{SO}_4$	-0.8 V ª -0.7 V ^b	14.7 mol s ⁻¹ cm ⁻² ^a	2.17% ^b	Chem. Commun. 2018 , 54, 12966
Cr ₂ O ₃ hollow microspheres on carbon paper	$0.1 \text{ M Na}_2\text{SO}_4$	-0.9 V	5.0 mol s ⁻¹ cm ⁻²	6.78%	ACS Catal. 2018 , <i>8</i> , 8540
Mn ₃ O ₄ nanocubes on carbon paper	$0.1 \text{ M Na}_2\text{SO}_4$	-0.8 V	3.8 mol s ⁻¹ cm ⁻²	3.0%	<i>Small</i> 2018 , <i>14</i> , 1803111
Y ₂ O ₃ nanosheets on carbon paper	$0.1 \text{ M} \text{ Na}_2 \text{SO}_4$	-0.9 V	10.6 mol s ⁻¹ cm ⁻²	2.53%	Ind. Eng. Chem. Res. 2018 , 57, 16622
Cr₂O₃@RGO on carbon paper	0.1 M HCI	-0.7 V ª -0.6 V ^b	2.7 mol s ⁻¹ cm ⁻² ^a	7.33% ^b	Inorg. Chem. 2019 , 58, 2257
CeO ₂ nanorods on carbon paper	$0.1 \text{ M Na}_2\text{SO}_4$	-0.5 V ª -0.6 V ^b	2.68 mol s ⁻¹ cm ⁻² ^a	3.7% ^b	ACS Sustainable Chem. Eng. 2019 , 7, 2889
MoO_3 nanosheets on glassy carbon electrode	0.1 M HCI	-0.5 V ª -0.3 V ^b	48 mol s ⁻¹ cm ⁻² ª	1.9% ^b	<i>J. Mater. Chem. A</i> 2018 , 6, 12974
CuO@RGO on carbon paper	0.1 M Na ₂ SO ₄	-0.75 V	18 mol s ⁻¹ cm ⁻²	3.9%	ChemCatChem 2019 , <i>11</i> , 1441
NbO ₂ nanoparticles on carbon paper	0.05 M H ₂ SO ₄	−0.65 V ª −0.6 V ^b	19 mol s ⁻¹ cm ⁻² ª	32% ^b	<i>Small Methods</i> 2019 , <i>3</i> , 1800386

Table S1. Summary of electrochemical NRR performance of our $SnS_2@Ni$ foam and other transition-metalbased catalysts under ambient conditions.

Nb₂O₅ nanofibers on carbon paper	0.1 M HCI	–0.55 V	71.2 mol s ⁻¹ mg ⁻¹	9.26%	Nano Energy 2018,
					52, 264
B-TiO ₂ microparticles on carbon paper	$0.1 \text{ M} \text{ Na}_2 \text{SO}_4$	–0.8 V	23.5 mol s ⁻¹ mg ⁻¹	3.4%	ACS Sustainable Chem.
					Eng. 2019, 7, 117
Mo@NPC on carbon cloth	0.1 M KHCO ₃	-0.3 V	22.2 mol s ⁻¹ cm ⁻²	14.6%	Angew. Chem. Int. Ed.
					2019 , 58, 2321

Supporting References

- G. Ye, Y. Gong, S. Lei, Y. He, B. Li, X. Zhang, Z. Jin, L. Dong, J. Lou, R. Vajtai, W. Zhou, P. M.
 Ajayan, *Nano Res.* 2017, 10, 2386.
- [2] L. Zhang, X. Ji, X. Ren, Y. Ma, X. Shi, Z. Tian, A. M. Asiri, L. Chen, B. Tang, X. Sun, *Adv. Mater.* **2018**, *30*, 1800191.
- [3] W. Qiu, X.-Y. Xie, J. Qiu, W.-H. Fang, R. Liang, X. Ren, X. Ji, G. Cui, A. M. Asiri, G. Cui, B. Tang, X.
 Sun, *Nat. Commun.* 2018, 9, 3485.
- [4] C. Du, M. Shang, J. Mao, W. Song, J. Mater. Chem. A 2017, 5, 15940.
- [5] W.-T. Yao, S.-H. Yu, Q.-S. Wu, Adv. Funct. Mater. 2007, 17, 623.
- [6] J. F. Xu, W. Ji, J. Y. Lin, S. H. Tang, Y. W. Du, Appl. Phys. A 1998, 66, 639.