Supporting Information

Facile Preparation of Novel and Active 2D Nanosheets from Nonlayered and Traditionally Un-exfoliatable Earth-abundant Materials

Sheng Liu,^{†1,2} Lei Xie,^{†2} Hui Qian,³ Guangyi Liu,^{*1} Hong Zhong,¹ and Hongbo Zeng^{*2}

¹College of Chemistry and Chemical engineering, Central South University, Changsha, 410083,

China

²Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta,

T6G 1H9, Canada

³Nanotechnology Research Center, National Research Council, Edmonton, Alberta T6G 2M9, Canada

[†]Sheng Liu and Lei Xie contributed equally to this work.

*Email: <u>hongbo.zeng@ualberta.ca (H. Zeng</u>), Phone: +1-780-492-1044, Fax: +1-780-492-2881

*Email: guangyiliu@csu.edu.cn (G. Liu)

S2

S3

Figure S1. AFM topographic images $(5 \times 5 \ \mu m^2)$ and height profiles of the nanosheets exfoliated from non-layered oxides: CoOOH and TiO₂, sulfides: ZnS and NiS, and carbonates: ZnCO₃, MnCO₃, FeCO₃ and PbCO₃, with cleavage planes. Quartz without any cleavage plane as the control experiment only shows irregular small particles.

Figure S2. Typical AFM topographic images and distributions of thickness and size of α -FeOOH, PbS and CaCO₃ nanosheets.

Figure S3. STEM-EDX analysis of α -FeOOH, PbS and CaCO₃ nanosheets. STEM-EXD confirms the chemical composition of exfoliated nanosheets for TEM characterization to be α -FeOOH, PbS and CaCO₃, respectively, and the contamination originated from the Cu source of TEM grids is inevitable.

	Atomic concentration (%)					
Samples	Fe	0	Pb	S	Са	С
2D FeOOH	31.5	68.5				
2D PbS			48.3	51.7		
2D CaCO ₃		59.1			17.1	23.8

 Table S1. Atomic concentration obtained from STEM-EDX analysis.

Figure S4. Atomic structures of α -FeOOH (010) and (100) cleavage planes.

Figure S5. Atomic structures of PbS (001) and (111) cleavage planes.

Figure S6. Atomic structures of $CaCO_3$ (10¹4), (10¹0), (11²0) and (10¹1) cleavage planes.

Figure S7. XRD of α -FeOOH, PbS and CaCO₃ nanosheets and pristine powders. The zoomed-in figures clearly show the stronger and broadened peaks for 2D nanosheets.

Figure S8. Survey scan XPS spectra of the exfoliated nanosheets and pristine powders of α -FeOOH, PbS and CaCO₃. Survey scan spectra confirm the purity of the exfoliated nanosheets and pristine powders since no impurity element was detected except the inevitable contamination of carbon and oxygen.

Figure S9. High-resolution XPS spectra of the exfoliated nanosheets and pristine powders of α -FeOOH, PbS and CaCO₃. It is noted that Fe 2p of α -FeOOH, Pb 4f of PbS and Ca 2p of CaCO₃ are shown in Figure 3. High-resolution spectra show the pristine chemical state with no obvious variation for both 2D α -FeOOH and 2D CaCO₃ while increased surface oxidation for 2D PbS.

Figure S10. UV-vis absorption of α -FeOOH, CoOOH and TiO₂ nanosheets in DMF with the calculated optical band gap (inset). In general, the materials with reduced size and dimension display raised conduction band and lowered valence band, thereby resulting in a blueshift of the absorption edge and increase in the band gap.

Figure S11. CV curves of 2D and bulk CoOOH at different scanning rates.

	Bulk		nanosheets	
Materials	Location (2-	Intensity (a.u.)	Location (2-	Intensity (a.u.)
	Theta) (°)		Theta) (°)	
	17.85	233	17.85	32
	21.25	1976	21.25	204
	26.35	169	26.35	34
	33.25	659	33.10	138
	34.70	40	34.60	54
	35.65	78	35.60	48
	36.10	271	36.05	64
	36.70	108	36.65	162
	39.10	58		
	40.20	58	40.15	44
	41.20	298	41.20	70
	43.25	32		
и-геооп	53.30	61	53.20	70
	54.15	138	54.00	88
	55.30	50		
	57.50	36	57.45	32
	59.05	48	58.95	50
	61.50	68	61.25	40
	63.40	62		
	64.00	44	64.00	60
	65.70	14	65.70	22
	67.10	62		
	69.25	56	68.95	36
	71.85	36		
PbS	25.95	1658	25.95	335
	30.10	22467	30.10	517
	43.05	1530	43.00	265
	51.00	893	50.95	188
	53.45	298	53.40	107
	62.55	1860	62.55	69
	68.95	206	68.80	55
	70.95	531	70.90	108
	78.95	226	78.85	53
	23.05	175	23.05	38
	29.40	13639	29.40	536
	31.45	106	31.45	18
CaCO ₃	35.95	283	35.95	68
	39.40	444	39.40	81
	43.15	428	43.15	101
	47.10	124	46.95	25

 Table S2. Diffraction peaks of the XRD patterns.

47.55	747	47.55	93
48.50	601	48.50	111
56.60	101	56.55	19
57.40	179	57.40	56
58.10	41		
60.70	101		
61.05	452	61	27
63.10	47		
64.70	108	64.70	32
65.65	130	65.65	27
69.25	45		
70.25	56		
72.90	65	72.90	18
73.70	28		
76.30	39		
77.20	75		

Table S3. Summarization of cleavage plane and 2D exfoliation of different non-layered materials. The non-layered materials that have been exfoliated to 2D materials are highlighted in green, and the non-layered materials that should be exfoliated to access 2D materials are highlighted in yellow.

Formula	Mineral material		Cleavag	e plane	
<mark>α-FeOOH</mark>	Goethite	<mark>(010)</mark>	(100)		
CoOOH	Heterogenite	(0001)			
TiO ₂	Rutile	<mark>(110)</mark>	(100)	(111)	
Fe ₃ O ₄	Magnetite	<mark>(111)</mark>			
PbS	Galena	<mark>(001)</mark>	(111)		
ZnS	Sphalerite	<mark>(011)</mark>			
NiS	Millerite	(1011)	(01 ¹ 2)		
CuS	Covellite	(0001)			
CaCO ₃	Calcite	<mark>(1014)</mark>	(10 <u>1</u> 0)	(1120)	(10 ¹ 1)
ZnCO ₃	Smithsonite	(10 ¹ 1)			
MnCO ₃	Rhodochrosite	(1011)	<mark>(10</mark> 12)		
FeCO ₃	Siderite	(10 ¹ 1)			
PbCO ₃	Cerussite	(110)	(021)	(010)	(012)
Cu ₂ CO ₃ (OH) ₂	Malachite	<mark>(201)</mark>	(010)		
Al ₂ O ₃	Corundum	(0001)	<mark>(10</mark> 11)		

Alooh	Diaspore	<mark>(010)</mark>	<mark>(110)</mark>	<mark>(100)</mark>	
Alooh	Boehmite	<mark>(010)</mark>			
TiO ₂	Anatase	(001)	<mark>(011)</mark>		
MnO ₂	Pyrolusite	<mark>(110)</mark>			
SnO ₂	Cassiterite	<mark>(100)</mark>	<mark>(110)</mark>	<mark>(111)</mark>	<mark>(011)</mark>
Cu ₂ O	Cuprite	<mark>(111)</mark>	<mark>(001)</mark>		
Cu ₂ S	Chalcocite	<mark>(110)</mark>			
FeS ₂	Pyrite	<mark>(001)</mark>	<mark>(011)</mark>	<mark>(111)</mark>	
CdS	Greenockite	(11 ² 2)	<mark>(0001)</mark>		
Ce(CO ₃)F	Bastnasite	(10 ¹ 0)	<mark>(0001)</mark>		
BiOCl	Bismoclite	(001)			

Table S4. Summarization non-layered materials that are considered non-exfoliatable to 2D materials (highlighted in red).

Formula	Mineral material	Cleavage plane
SiO ₂	Quartz	No Cleavage
CuO	Tenorite	No Cleavage
Tl ₂ O ₃	Avicennite	No Cleavage
Sb ₂ O ₄	Clinocervantite	No Cleavage
Cr ₂ O ₃	Eskolaite	No Cleavage
Ta ₂ O ₅	Tantite	No Cleavage
WO ₃ ·2H ₂ O	Meymacite	No Cleavage
WO ₃ ·0.5H ₂ O	Elsmoreite	No Cleavage
Sb ₃ O ₆ (OH)	Stibiconite	No Cleavage
Cu ₇ S ₄	Anilite	No Cleavage
Ni ₃ S ₂	Heazlewoodite	No Cleavage
HgS	Hypercinnabar	No Cleavage
Sb ₂ S ₃	Metastibnite	No Cleavage
$Rh_{17}S_{15}$	Miassite	No Cleavage
AgBiS ₂	Schapbachite	No Cleavage
FeSe ₂	Dzharkenite	No Cleavage

Ag ₄ SeS	Aguilarite	No Cleavage
AgBiS ₂	Matildite	No Cleavage
$Cu_{31}S_{16}$	Djurleite	No Cleavage
AgFe ₂ S ₃	Argentopyrite	No Cleavage
TIFeS ₂	Raguinite	No Cleavage
AlTaO ₄	Alumotantite	No Cleavage
CuTeO ₃	Balyakinite	No Cleavage
AlPO ₄	Berlinite	No Cleavage
Fe(OH) ₃	Bernalite	No Cleavage
AgBr	Bromargyrite	No Cleavage
AgCl	Chlorargyrite	No Cleavage
HgTe	Coloradoite	No Cleavage
Cu ₃ As	Domeykite	No Cleavage
Ca ₃ Si ₂ O ₇	Rankinite	No Cleavage
ZrSiO ₄	Reidite	No Cleavage
Cu ₇ Te ₅	Rickardite	No Cleavage
FePO ₄	Rodolicoite	No Cleavage