Electronic Supplementary Information

3D Hierarchical porous Co_{1-x}S@C derived from ZIF-67 single crystalsself-assembling superstructure with superior pseudocapacitance

Shixiong Sun¹, Xueping Sun¹, Yi Liu, Jian Peng, Yuegang Qiu, Yue Xu, Jinxu Zhang, Qing Li, Chun Fang, Jiantao Han*, and Yunhui Huang

State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei Province, People's Republic of China *Corresponding authors

E-mail addresses:jthan@gust.edu.cn

1. EXPERIMENTAL SECTION

1.1. Materials Synthesis

Synthesis of urchin-like 2CoCO₃·3Co(OH)₂·H₂O (CCH):

Typically, 0.291 g Co(NO₃)₂·6H₂O, 0.111 g NH₄F, and 0.18 g urea were dissolved in 40 ml deionized water, using ultrasonication for 10 minutes and stirred for 30 minutes, to form a homogeneous solution. The reaction solution was transferred into a 50ml Teflon-lined stainless-steel autoclave and kept in an oven at 120°C for 12h. At room temperature, the pink-colored precipitate was collected by centrifugation, washed with deionized water several times, and dried in a freezing dryer.

Synthesis of hollow-urchin-like ZIF-67 superstructures (HU-ZIF-67S):

¹ These authors contributed equally to this work.

10 mg CCHs were dissolved in 40 ml deionized water. Then, 15 mg 2-methylimidazole and 1 ml triethylamine were orderly added to the above solution, using sonication and vigorous stirring for 30minutes. The solution was then transferred to a 50 ml Teflon-lined stainless-steel autoclave and kept in an oven at 100 °C for varying durations. The resulting products were collected by centrifugation, washed with methanol several times to eliminate the residual organic matter, and dried overnight in a vacuum at 70 °C.

Synthesis of hierarchical porous hollow urchin-like (HPHU) $Co_{1-x}S@C$ composites:

First, 100 mg HU-ZIF-67S were dispersed into 40 ml ethanol. Then, 100 mg of thioacetamide (TAA) was added into the above solution and continuously stirred for 30 minutes. The mixture was put into a 50 ml Teflon-lined autoclave and maintained at 150 °C for 3 hours. After it naturally cooled to room temperature, the product was collected by vacuum filtration and washed with water and ethanol. Finally, the products were pyrolyzed at 550 °C in Ar atmosphere, and HPHU-Co_{1-x}S@C composites were successfully obtained.

Synthesis of activated carbon (AC):

Similar to our previous report, AC was prepared from gelatin. Typically, the purchased gelatin was carbonized under Ar flow at 800 °C for 2 hours. Then, the asprepared product was immersed in 5 wt% HCl solution for 12 hours, stirred constantly, and collected by filtration. After that, the product was mixed with KOH in the mass

ratio of 1:4 and further activated at 700 $^{\circ}$ C for 1 hour under an N_2 atmosphere to obtain the porous activated carbon.

1.2. Material Characterization

FSEM (JEOL, Japan) equipped with EDX was employed to characterize the surface morphologies of as-prepared samples. JEM-2100 electron microscope (TEM) was employed to investigate the microstructures of as-prepared samples. Panalytical X' pert PRO MRD with Cu Kα radiation was used to characterize the crystalline structures. KRATOS AXIS DLD spectrometer was used to examine the X-ray photoelectron spectroscopy (XPS) of the as-prepared samples. Micrometritics ASAP 2020 volumetric adsorption analyzer was used to record the N₂ adsorption isotherm of samples at the temperature at 77 K.

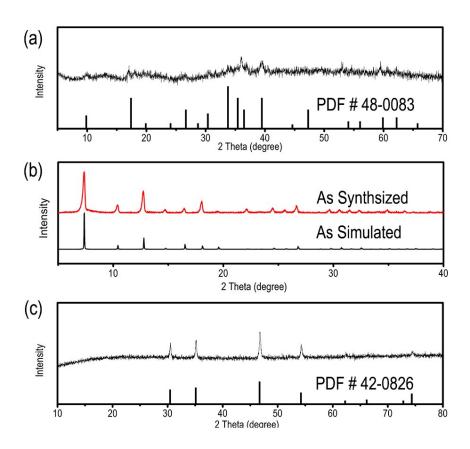
1.3. Electrochemical Measurements

We prepared working electrodes by mixing active material with polytetrafluoroethylene, conductive graphite, and acetylene black in the weight ratio of 8:0.5:0.75:0.75. By using isopropanol as wetting agent, the slurry was spread onto a piece of nickel foam with the mass loading of 5 mg cm⁻². The foams were dried overnight at 60 °C and pressed at 10 M Pa before testing.

The electrochemical measurements of electrode material were carried out in CHI760E, via a three-electrode system in a 6.0 M KOH aqueous electrolyte. A saturated calomel electrode (SCE) served as the reference electrode and a Pt foil as the counter electrode.

The specific capacity of electrode material was calculated by the following equation:

$$C = \frac{I \cdot t}{m \cdot V} \tag{1}$$


In where, I is the discharging current, t is the discharging time, m is the masss loading of active-material, and V is the operating potential window.

HSC electrochemical performance was measured in a CHI760E, but via a twoelectrode system. In order to balance the charge between the positive electrode and the negative electrode of HSC, the optimized mass ratio is 0.45. In this work, the active masses of the positive electrode were 3 mg, and the active masses of the negative electrode were 6.7 mg.

The specific capacity of HSC (C_{HSC}) was calculated by the following equation:

$$C_{HSC} = \frac{I \cdot t}{m_{total} \cdot V} \tag{2}$$

In where, I is the discharging current, t is the discharging time, m_{total} is the total active-material mass loading of both electrodes, and V is the operating voltage window.

Fig. S1. (a) XRD pattern for urchin-like CCH, (b) XRD pattern for HU-ZIF-67S, (c) XRD pattern for HPHU-Co_{1-x}S@C.

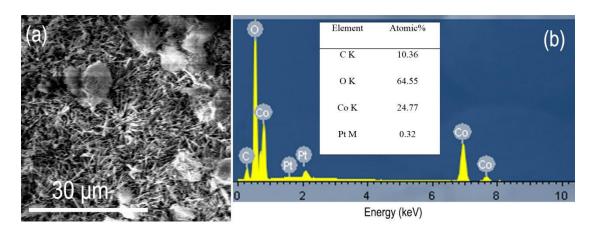


Fig. S2. SEM and EDX characterization of urchin-like CCH. (a) SEM image, (b) EDX spectrum.

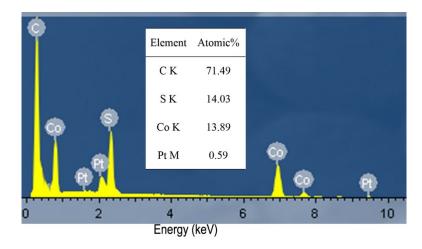


Fig. S3. EDX spectrum of HUPU-Co_{1-x}S@C.

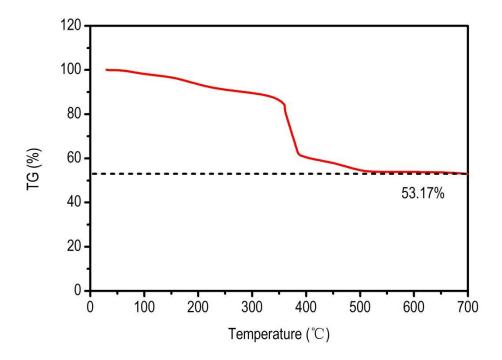


Fig. S4. TGA characterization of HUPU-Co $_{1-x}$ S@C.

According to the following equation (3), the $\text{Co}_{1-x}S$ contents are about 60.2 %, the content of the carbon substrate is 39.8%.

$$wt_{Co_{1-x}S} = wt_{Co_3O_4} \times \frac{3M_{Co_{1-x}S}}{M_{Co_3O_4}}$$
(3)

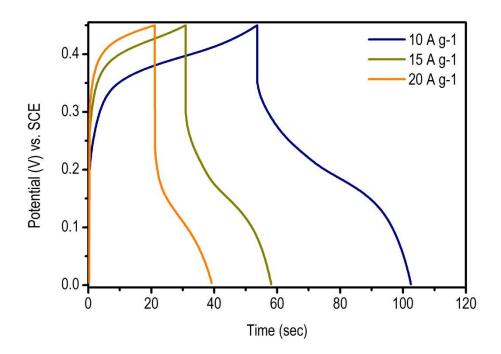
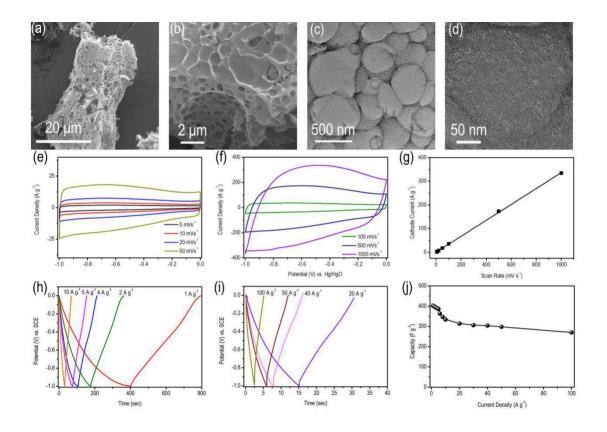



Fig. S5. Charge/discharge curves of HPHU-Co_{1-x}S@Cat the current density from 10 to $20 \hspace{1cm} A \hspace{1cm} g^{-1}.$

Fig. S6. Structural and electrochemical characterization of AC: (a, b) FESEM. (b, c) TEM. (e, f) CV curves at scan rates range from 5 to 1000 mV s⁻¹,(g) Peak current of CV curves at different scan rate, (h, i) Galvanostatic charge/discharge curves at the current densities from 0.5 to 100A g⁻¹, (j) The specific capacitance of HPHU-Co₁. _xS@C at different current densities.

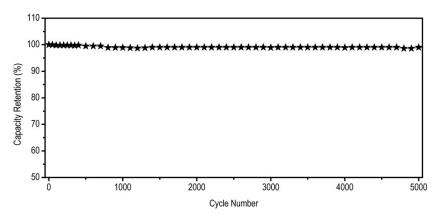


Fig. S7. Cycling performance of AC at the constant current density of 5 A g⁻¹.

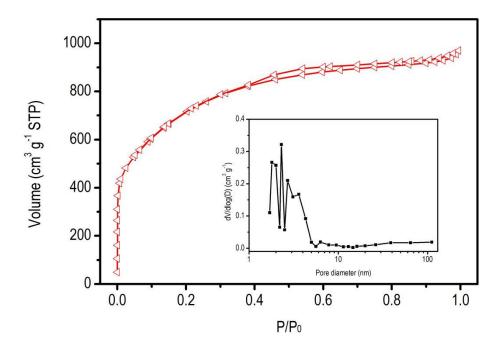


Fig. S8. N₂-sorption isotherms and pore-size distribution of activated carbon

Table S1 The surface area, pore size, and pore volume of activated carbon.

Sample	SurfaceArea(m ² g ⁻¹)	Average pore diameter (nm)	PoreVolume(cm ³ g ⁻¹)	
AC	2468.41	2.52	1.86	

Table S2 Comparison of the specific capacity of metals sulfides in the present work and the reported work

Materials	Loading Mass (mg cm ⁻²)	Current density	Specific Capacity	Reference
$Co_{1-x}S$	Not report	1 A g ⁻¹	998 F g ⁻¹	Ref.1
CoS	Not report	1 A g ⁻¹	224 F g ⁻¹	Ref.2
$NiCo_2S_4$	Not report	1 A g ⁻¹	1231 F g ⁻¹	Ref.3
$Ni_{x}Co_{9-x}S_{8}@C$	Not report	2 A g ⁻¹	1404 F g ⁻¹	Ref.4
$NixCo_{3-x}S_4$	5	2 A g ⁻¹	1203 F g ⁻¹	Ref.5
NiS	1	1 A g ⁻¹	668 F g ⁻¹	Ref.6
$NiCo_2S_4$	Not report	4 A g ⁻¹	738 F g^{-1}	Ref.7
NiCo ₂ S ₄	Not report	1 A g ⁻¹	1498 Fg ⁻¹	Ref.8
rGO/CoNiS _x /N–C	3	1 A g ⁻¹	1028.2 Fg ⁻¹	Ref.9
Co ₉ S ₈ -NSA/NF	Not report	0.5 A g ⁻¹	1098.8 F g ⁻¹	Ref.10
NiCo ₂ S ₄ nanotube	Not report	50 mV s ⁻¹	603 F g ⁻¹	Ref.11
NiCo ₂ S ₄ @G	Not report	1A g ⁻¹	1432 F g ⁻¹	Ref.12
$NiCo_2S_4$	Not report	1A g ⁻¹	1296 F g ⁻¹	Ref.13
$NiCo_2S_4$	3	1A g ⁻¹	$1722 \; \mathrm{F} \; \mathrm{g}^{-1}$	Ref.14
H-3DRG@NiCo ₂ S ₄	Not report	1A g ⁻¹	$783 \; \mathrm{F} \; \mathrm{g}^{-1}$	Ref.15
HPHU-Co _{1-x} S@C	5	1 A g ⁻¹	1871 F g ⁻¹	This Work

- [1] J. Zhu, W. Zhou, Y. Zhou, X. Cheng and J. Yang, J. Electron. Mater., 2019, 48, 1531-1539.
- [2] B. You, N. Jiang, M. Sheng, Y. Sun, Chem. Commun., 2015, 51, 4252-4255.
- [3] L. Shen, J. Wang, G. Xu, H. Li, H. Dou, X. Zhang, *Adv. Energy Mater.*, 2015, 5, 140977.
- [4] Y. Zhang, C. Sun, H. Su, W. Huang, X. Dong, *Nanoscale*, 2015, 7, 3155-3163.
- [5] Y. M. Chen, Z. Li, X. W. Lou, Angew. Chem. Int. Edit., 2015, 54, 10521-10524.
- [6] X.-Y. Yu, L. Yu, L. Shen, X. Song, H. Chen, X. W. Lou, *Adv. Funct. Mater.*, 2014, **24**, 7440.
- [7] J. Pu, T. Wang, H. Wang, Y. Tong, C. Lu, W. Kong, Z. Wang, *Chempluschem*, 2014, **79**, 577-583.
- [8] A. M. Elshahawy, X. Li, H. Zhang, Y. Hu, K. H. Ho, C. Guan, J. Wang, *J. Mater. Chem. A*, 2017, **5**, 7494-7506.
- [9] Q. Chen, J. Miao, L. Quan, D. Cai, H. Zhan, Nanoscale, 2018, 10, 4051-4060.
- [10] X. Han, K. Tao, D. Wang, L. Han, Nanoscale, 2018, 10, 2735-2741.
- [11] P. Hao, J. Tian, Y. Sang, C.-C. Tuan, G. Cui, X. Shi, C. P. Wong, B. Tang, H. Liu, *Nanoscale*, 2016, **8**, 16292-16301.
- [12] F. Yu, Z. Chang, X. Yuan, F. Wang, Y. Zhu, L. Fu, Y. Chen, H. Wang, Y. Wu, W. Li, *J. Mater. Chem. A*, 2018, **6**, 5856-5861.
- [13] Y. Liu, Z. Wang, Y. Zhong, M. Tade, W. Zhou, Z. Shao, *Adv. Funct. Mater.*, 2017, **27**. 1701229.
- [14] S. G. Mohamed, I. Hussain, J.-J. Shim, *Nanoscale*, 2018, **10**, 6620-6628.
- [15] K. Qin, L. Wang, S. Wen, L. Diao, P. Liu, J. Li, L. Ma, C. Shi, C. Zhong, W. Hu, E. Liu, N. Zhao, J. Mater. Chem. A, 2018, 6, 8109-8119.