Supporting Information

Surface-Mounted MOF Thin Film with Oriented Nanosheet

Arrays for Enhancing Oxygen Evolution Reaction

De-Jing Li,^{ab§} Qiao-Hong Li,^{a§} Zhi-Gang Gu^a* and Jian Zhang^a

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of

Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China

^b University of Chinese Academy of Sciences, Beijing 100049, P.R. China

[§] These authors contributed equally to this work

E-mail: zggu@fjirsm.ac.cn

Table of content

Scheme S1. Schematic illustration of the formation of M₂(BDC)₂TED on the substrate.

Figure S1. The surface SEM images of $M_2(BDC)_2TED$ MOF grown on the Cu foil: (a) (b) $Co_2(BDC)_2TED$; (c) (d) $Ni_2(BDC)_2TED$.

Figure S2. (a) N_2 adsorption isotherm and (b) pore size distribution of Co/Ni(BDC)₂TED nanosheets stripped from Cu foam.

Figure S3. The IR spectrum of Co₂(BDC)₂TED, Ni₂(BDC)₂TED and Co/Ni(BDC)₂TED nanosheets stripped from Cu foam.

Figure S4. The XPS survey of Co/Ni(BDC)₂TED@CF.

Figure S5. The XPS results: (a) (b) Co₂(BDC)₂TED@CF; (c) (d) Ni₂(BDC)₂TED@CF.

Figure S6. The surface SEM images of $M_2(BDC)_2TED$ MOF grown on the Cu foam: (a, b, c) $Co_2(BDC)_2TED@CF$; (d, e, f) $Ni_2(BDC)_2TED@CF$.

Figure S7. The setup of electrochemical measurement.

Figure S8. LSV curves in the reverse sweep direction.

Figure S9. (a) CVs of bare Cu foam at the different scan rates from 10-100 mV s⁻¹ in the potential range of 0.01-0.1 V vs Ag/AgCl and (b) Capacitive current at 0.06 V vs Ag/AgCl.

Figure S10. (a) CVs of Co/Ni (BDC)₂TED@CF at the different scan rates from 10-100 mV s⁻¹ in the potential range of 0.01-0.1 V vs Ag/AgCl and (b) Capacitive current at 0.06 V vs Ag/AgCl.

Figure S11. (a) CVs of Co₂(BDC)₂TED@CF at the different scan rates from 10-100 mV s⁻¹ in thepotential range of 0.01-0.1 V vs Ag/AgCl and (b) Capacitive current at 0.06 V vs Ag/AgCl.

Figure S12. (a) CVs of $Ni_2(BDC)_2TED@CF$ at the different scan rates from 10-100 mV s⁻¹ in the potential range of 0.01-0.1 V vs Ag/AgCl and (b) Capacitive current at 0.06 V vs Ag/AgCl.

Figure S13. The ECSA normalized LSV curves.

Figure S14. (a) The XRD of Co/Ni(BDC)₂TED powder; (b) The SEM image of Co/Ni(BDC)₂TED

powder deposited on Cu foam; (c) The LSV curves of Co/Ni(BDC)₂TED deposited on Cu foam and Co/Ni(BDC)₂TED@CF; (d) Chronopotentiometric curves of Co/Ni(BDC)₂TED deposited on Cu foam and Co/Ni(BDC)₂TED@CF.

Figure S15. Faradaic efficiency for Co/Ni(BDC)₂TED@CF at the current density of 50 mA cm⁻².

Figure S16. (a) CV of Co/Ni(BDC)₂TED@CF at different scan rates of 5, 10, 15, 20, and 25 mV s^{-1} in 1.0 M KOH and (b) the linear relationship of the oxidation peak currents vs. scan rates for theCo/Ni(BDC)₂TED@CF.

Figure S17. (a) CV of Ni₂(BDC)₂TED@CF at different scan rates of 5, 10, 15, 20, and 25 mV s⁻¹ in 1.0 M KOH and (b) the linear relationship of the oxidation peak currents vs. scan rates for the Ni₂(BDC)₂TED@CF.

Figure S18. (a) CV of $Co_2(BDC)_2TED@CF$ at different scan rates of 5, 10, 15, 20, and 25 mV s⁻¹ in 1.0 M KOH and (b) the linear relationship of the oxidation peak currents vs. scan rates for the $Co_2(BDC)_2TED@CF$.

Figure S19. The SEM images after the electrochemical testing at 50 mA cm⁻² for 10000s: (a) $Co_2(BDC)_2TED@CF$; (b) $Ni_2(BDC)_2TED@CF$; (c) $Co/Ni(BDC)_2TED@CF$; (d) The TEM images of $Co/Ni(BDC)_2TED@CF$ after the electrochemical testing at 50 mA cm⁻² for 10000 s.

Figure S20. (a) The XRD and (b) IR of Co/Ni(BDC)₂TED@CF after the electrochemical testing.

Figure S21. The XPS results of Co/Ni(BDC)₂TED@CF after OER cycling.

Table S1. Comparison of Electrocatalytic Performances of Various Materials.

Figure S22. The surface SEM images of Co/Ni(BDC)₂TED@CF with different cycles: (a, b) 5 cycles; (c, d) 10 cycles; (e, f) 20 cycles; (g, h) 30 cycles; (i, j) 40 cycles; (k, l) 50 cycles.

Figure S23. The cross-sectional SEM images of Co/Ni(BDC)₂TED@CF with different cycles: (a) (b) 5 cycles; (c) (d) 10 cycles; (e) (f) 20 cycles; (g) (h) 30 cycles; (i) (j) 40 cycles; (k) (l) 50 cycles.

Figure S24. The curves of the thickness versus preparation cycles.

Figure S25. CVs of Co/Ni(BDC)₂TED@CF with different thickness at the different scan rates

from 10-100 mV s⁻¹ in the potential range of 0.01-0.1 V vs Ag/AgCl: (a) 5 cycles; (b) 10 cycles; (c) 20 cycles; (d) 30 cycles; (e) 40 cycles; (f) 50 cycles.

Figure S26. Capacitive current at 0.06 V vs Ag/AgCl for Co/Ni(BDC)₂TED@CF with different thickness.

Figure S27. The ECSA normalized LSV curves of Co/Ni(BDC)₂TED@CF with different thickness.

Figure S28. The SEM EDS date of Co/Ni(BDC)₂TED@CF with a Co/Ni ratio of 1/1.5(Cu is from Cu foam).

Figure S29. The SEM EDS date of Co/Ni(BDC)₂TED@CF with a Co/Ni ratios of 1/0.5(Cu is from Cu foam).

Figure S30. The SEM EDS date of Co/Ni(BDC)₂TED@CF with a Co/Ni ratios of 1/1(Cu is from Cu foam).

Figure S31. The SEM mapping in Co/Ni(BDC)₂TED@CF with a Co/Ni ratios of 1/1.5.

Figure S32. The SEM mapping in Co/Ni(BDC)₂TED@CF with a Co/Ni ratios of 1/0.5.

Figure S33. The SEM mapping in Co/Ni(BDC)₂TED@CF with a Co/Ni ratios of 1/1.

Figure S34. (a) The polarization curves for Co/Ni(BDC)₂TED@CF with different Co/Ni ratios; (b) The overpotential of Co/Ni(BDC)₂TED@CF with different Co/Ni ratios at the current density of 50 mA cm⁻²; (c) The EIS curves; (d) The Tafel plots from the LSV curves.

Figure S35. CVs of Co/Ni(BDC)₂TED@CF with different Co/Ni ratios at the different scan rates from 10-100 mV s⁻¹ in the potential range of 0.01-0.1 V vs Ag/AgCl: (a) Co/Ni(1/05); (b) Co/Ni(1/1); (c) Co/Ni(1/1.5) and (d) Capacitive current at 0.06 V vs Ag/AgCl.

Table S2. The ICP dates of Co/Ni ratios in Co/Ni(BDC)₂TED@CF with different Co/Ni ratios.

Figure S36. The DFT calculation model of OER process on metal sites in the structure of Co₂(BDC)₂TED with [001] orientation.

Figure S37. The DFT calculation model of OER process on metal sites in the structure of

Ni₂(BDC)₂TED with [001] orientation.

Figure S38. The diagrammatic graph of OER process in Co/Ni(BDC)₂TED nanosheets.

Figure S39. The Gibbs free energy changes of Co/Ni(BDC)₂TED nanosheets with two different models.

Scheme S1. Schematic illustration of the formation of $M_2(BDC)_2TED$ on the substrate.

Figure S1. The surface SEM images of $M_2(BDC)_2TED$ MOF grown on the Cu foil: (a) (b) $Co_2(BDC)_2TED$; (c) (d) $Ni_2(BDC)_2TED$.

Figure S2. (a) N_2 adsorption isotherm and (b) pore size distribution of Co/Ni(BDC)₂TED nanosheets stripped from Cu foam.

Figure S3. The IR spectrum of Co₂(BDC)₂TED, Ni₂(BDC)₂TED and Co/Ni(BDC)₂TED nanosheets

stripped from Cu foam.

Figure S4. The XPS survey of Co/Ni(BDC)₂TED@CF.

Figure S5. The XPS results: (a) (b) Co₂(BDC)₂TED@CF; (c) (d) Ni₂(BDC)₂TED@CF.

Figure S6. The surface SEM images of M₂(BDC)₂TED MOF grown on the Cu foam: (a, b, c) Co₂(BDC)₂TED@CF; (d, e, f) Ni₂(BDC)₂TED@CF.

Figure S7. The setup of electrochemical measurement.

Figure S8. LSV curves in the reverse sweep direction.

The presence of strong oxidation peaks of Ni²⁺ to Ni³⁺ in LSV curves of the catalysis (Figure 3a), so we can obtain the overpotentials at the current density of 10 mA cm⁻² in the LSV curves by the reverse sweep direction. As shown in Figure S8, Co/Ni(BDC)₂TED@CF requied the lowest overpotential of only 260 mV to reach the current density of 10 mA cm⁻², while the overpotentials of about 276, 327 and 380 mV were required to reach the current density of 10 mA cm⁻² for Ni₂(BDC)₂TED@CF, Co₂(BDC)₂TED@CF and IrO₂@CF @CF, respectively. This order is consistent with those at the current density of 50 mA cm⁻², indicating the excellent OER activity of Co/Ni(BDC)₂TED@CF.

Figure S9. (a) CVs of bare Cu foam at the different scan rates from 10-100 mV s⁻¹ in the potential range of 0.01-0.1 V vs Ag/AgCl and (b) Capacitive current at 0.06 V vs Ag/AgCl.

Figure S10. (a) CVs of Co/Ni (BDC)₂TED@CF at the different scan rates from 10-100 mV s⁻¹ in the potential range of 0.01-0.1 V vs Ag/AgCl and (b) Capacitive current at 0.06 V vs Ag/AgCl.

Figure S11. (a) CVs of Co₂(BDC)₂TED@CF at the different scan rates from 10-100 mV s⁻¹ in the potential range of 0.01-0.1 V vs Ag/AgCl and (b) Capacitive current at 0.06 V vs Ag/AgCl.

Figure S12. (a) CVs of Ni₂(BDC)₂TED@CF at the different scan rates from 10-100 mV s⁻¹ in the potential range of 0.01-0.1 V vs Ag/AgCl and (b) Capacitive current at 0.06 V vs Ag/AgCl.

Figure S13. The ECSA normalized LSV curves.

Figure S14. (a) The XRD of Co/Ni(BDC)₂TED powder; (b) The SEM image of Co/Ni(BDC)₂TED powder deposited on Cu foam; (c) The LSV curves of Co/Ni(BDC)₂TED deposited on Cu foam and Co/Ni(BDC)₂TED@CF; (d) Chronopotentiometric curves of Co/Ni(BDC)₂TED deposited on Cu foam and Co/Ni(BDC)₂TED@CF.

Figure S15. Faradaic efficiency for Co/Ni(BDC)₂TED@CF at the current density of 50 mA cm⁻².

Figure S16. (a) CV of Co/Ni(BDC)₂TED@CF at different scan rates of 5, 10, 15, 20, and 25 mV s^{-1} in 1.0 M KOH and (b) the linear relationship of the oxidation peak currents vs. scan rates for theCo/Ni(BDC)₂TED@CF.

Figure S17. (a) CV of Ni₂(BDC)₂TED@CF at different scan rates of 5, 10, 15, 20, and 25 mV s⁻¹ in 1.0 M KOH and (b) the linear relationship of the oxidation peak currents vs. scan rates for the Ni₂(BDC)₂TED@CF.

Figure S18. (a) CV of $Co_2(BDC)_2TED@CF$ at different scan rates of 5, 10, 15, 20, and 25 mV s⁻¹ in 1.0 M KOH and (b) the linear relationship of the oxidation peak currents vs. scan rates for the $Co_2(BDC)_2TED@CF$.

Figure S19. (a) The SEM image of Co/Ni(BDC)₂TED@CF after the electrochemical testing and (b) The TEM images of Co/Ni(BDC)₂TED@CF after the electrochemical testing.

Figure S20. (a) The XRD and (b) IR of Co/Ni(BDC)₂TED@CF after the electrochemical testing.

Figure S21. The XPS results of Co/Ni(BDC)₂TED@CF after OER test.

Catalyst	Mediu m	Overpotential (10 mA/cm ²)	Overpotentia I (50mA/cm ²)	Tafel slope (mV dec ⁻¹)	reference
Co/Ni(BDC)2TED@CF nanosheets	1.0 М КОН	260 mV	287 mV	76.24	This work
Ni-MOF@Fe-MOF nanosheets	1.0 М КОН	265 mV	~330 mV	82	1
Co-MOF NS/CC	1.0 М КОН		370 mV	106.6	2
Ti@TiO ₂ /CdS/ZIF-67	1.0 M NaOH	410 mV	~640 mV	42	3
NiFe-UMNs	1.0 M KOH	260 mV	~290 mV	30	4
NiFe-MOF array	0.1 M KOH	240 mV	~390 mV	34	5
NiCu-MOFNs/NF	1.0 М КОН		~280 mV	47.9	6

Table S1 Comparison of Electrocata	ytic Performances of Var	ious Materials
---	--------------------------	----------------

- K. Rui, G. Zhao, Y. Chen, Y. Lin, Q. Zhou, J. Chen, J. Zhu, W. Sun, W. Huang and S. X. Dou, *Adv. Funct. Mater.*, 2018, 28, 1801554.
- Z. Wei, W. Zhu, Y. Li, Y. Ma, J. Wang, N. Hu, Y. Suo and J. Wang, *Inorg. Chem.*, 2018, 57, 8422-8428.
- 3. T. Zhang, J. Du, H. Zhang and C. Xu, *Electrochim. Acta*, 2016, **219**, 623-629.
- 4. G. Hai, X. Jia, K. Zhang, X. Liu, Z. Wu and G. Wang, *Nano Energy*, 2018, **44**, 345-352.

- 5. J. Duan, S. Chen and C. Zhao, *Nat. Commun.*, 2017, **8**, 15341.
- X. Zheng, X. Song, X. Wang, Z. Zhang, Z. Sun and Y. Guo, *New J. Chem.*, 2018, **42**, 8346-8350.

Figure S22. The surface SEM images of Co/Ni(BDC)₂TED@CF with different cycles: (a, b) 5 cycles; (c, d) 10 cycles; (e, f) 20 cycles; (g, h) 30 cycles; (i, j) 40 cycles; (k, l) 50 cycles.

Figure S23. The cross-sectional SEM images of Co/Ni(BDC)₂TED@CF with different cycles: (a) (b) 5 cycles; (c) (d) 10 cycles; (e) (f) 20 cycles; (g) (h) 30 cycles; (i) (j) 40 cycles; (k) (l) 50 cycles.

Figure S24. The curves of the thickness versus preparation cycles.

Figure S25. CVs of Co/Ni(BDC)₂TED@CF with different thickness at the different scan rates from 10-100 mV s⁻¹ in the potential range of 0.01-0.1 V vs Ag/AgCI: (a) 5 cycles; (b) 10 cycles; (c) 20 cycles; (d) 30 cycles; (e) 40 cycles; (f) 50 cycles.

Figure S26. Capacitive current at 0.06 V vs Ag/AgCl for Co/Ni(BDC)₂TED@CF with different thickness.

Figure S27. The ECSA normalized LSV curves of Co/Ni(BDC)₂TED@CF with different thickness.

element	%	•
СК	34.44	
N K	2.16	°
ОК	36.83	
Со К	5.99	6
Ni K	8.91	
Cu K	11.66	0 2 4 6 8 10 满量程 7169 cts 光标: 0.000

Figure S28. The SEM EDS date of Co/Ni(BDC)₂TED@CF with a Co/Ni ratio of 1/1.5 (Cu is from Cu foam).

element	%	
СК	37.77	
NK	1.87	
ОК	35.36	
Со К	9.06	\$
Ni K	4.54	
Cu K	11.40	U 2 4 6 8 10 満量程 8195 cts 光标: 0.000

Figure S29. The SEM EDS date of Co/Ni(BDC)₂TED@CF with a Co/Ni ratios of 1/0.5 (Cu is from Cu foam).

Figure S30. The SEM EDS date of $Co/Ni(BDC)_2TED@CF$ with a Co/Ni ratios of 1/1 (Cu is from Cu foam).

Figure S31. The SEM mapping in Co/Ni(BDC)₂TED@CF with a Co/Ni ratios of 1/1.5.

Figure S32. The SEM mapping in Co/Ni(BDC)₂TED@CF with a Co/Ni ratios of 1/0.5.

Figure S33. The SEM mapping in Co/Ni(BDC)₂TED@CF with a Co/Ni ratios of 1/1.

Figure S34. (a) The polarization curves for Co/Ni(BDC)₂TED@CF with different Co/Ni ratios; (b) The overpotential of Co/Ni(BDC)₂TED@CF with different Co/Ni ratios at the current density of 50 mA/cm²; (c) The EIS curves; (d) The Tafel plots from the LSV curves.

Figure S35. CVs of Co/Ni(BDC)₂TED@CF with different Co/Ni ratios at the different scan rates from 10-100 mV s⁻¹ in the potential range of 0.01-0.1 V vs Ag/AgCl: (a) Co/Ni(1/05); (b) Co/Ni(1/1); (c) Co/Ni(1/1.5) and (d) Capacitive current at 0.06 V vs Ag/AgCl.

Sample	concentration	ICP (Co/Ni)	ICP (Co/Ni)	Average Co/Ni ratio
Co/Ni(BDC)2TED@CF(1/1.5)	Co(OAc) ₂ (0.5 mM)	17.51/27.3	17.09/25.4	1/1.5
	Ni(OAc) ₂ (1.0 mM)			
	Co(OAc) ₂ (1.0 mM)	19.22/9.81	24.7/11.9	1/0.5
$CO/NI(BDC)_2 I ED (CF(1)0.5)$	Ni(OAc) ₂ (0.5 mM)			
Co/Ni(BDC)₂TED@CF(1/1)	Co(OAc) ₂ (1.0 mM)	18.17/17.27	18.9/17.7	1 /1
	Ni(OAc) ₂ (1.0 mM)			1/1

Table S2. The ICP dates of Co/Ni ratios in Co/Ni(BDC)₂TED@CF with different Co/Ni ratios.

Figure S36. The DFT calculation model of OER process on metal sites in the structure of $Co_2(BDC)_2TED$ with [001] orientation .

Figure S37. The DFT calculation model of OER process on metal sites in the structure of $Ni_2(BDC)_2TED$ with [001] orientation.

Figure S38. The diagrammatic ghaph of OER process in Co/Ni(BDC)₂TED nanosheets.

Reaction coordinate

Figure S39. The Gibbs free energy changes of Co/Ni(BDC)₂TED nanosheets with two different models.