Supplementary Information

Selectivity for Ethanol Partial Oxidation: The Unique Chemistry of Single-Atom Alloy Catalysts on Au, Ag, and Cu(111)

Hao Li*, Wenrui Chai, and Graeme Henkelman*

Department of Chemistry and the Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, Texas 78712, USA *Corresponding Authors:

lihao@utexas.edu (H.L.);

henkelman@utexas.edu (G.H.);

	EtOH- Binding	H-Binding	O-Binding	OH-Binding	CO-Binding
3-Layer	-0.71 eV	-2.69 eV	-5.04 eV	-3.32 eV	-1.97 eV
5-Layer	-0.72 eV	-2.69 eV	-4.97 eV	-3.29 eV	-2.00 eV
Relative Error	1.39%	0.00%	1.41%	0.91%	1.50%

Table S1. Convergence test on the slab thickness of a $Pd_1/Cu(111)$ surface.

Note: All the binding energies were calculated using the total energies of a bare slab and the adsorbate in vacuum as references. The adsorbate total energies were calculated with spin-polarization.

Table S2. Reaction energy of a dopant leaching out from the (111) surface (E_{Leach}).
Schematic pictures can be found in Figure S1.	

Surfaces	E _{Leach} (eV)
Cu ₁ /Au(111)	1.55
Ir ₁ /Au(111)	2.72
Pd ₁ /Au(111)	1.71
Pt ₁ /Au(111)	2.01
Rh ₁ /Au(111)	2.35
Cu ₁ /Ag(111)	1.43
Ir ₁ /Ag(111)	2.84
Pd ₁ /Ag(111)	1.79
Pt ₁ /Ag(111)	2.10
Rh ₁ /Ag(111)	2.50
Ir ₁ /Cu(111)	3.37
Pd ₁ /Cu(111)	2.05
Pt ₁ /Cu(111)	2.50
Rh ₁ /Cu(111)	2.89

Surfaces	E _{Dimer} (eV)
Cu ₁ /Au(111)	0.09
Ir ₁ /Au(111)	-0.25
Pd ₁ /Au(111)	0.07
Pt ₁ /Au(111)	-0.01
Rh ₁ /Au(111)	0.02
Cu ₁ /Ag(111)	0.03
Ir ₁ /Ag(111)	-0.38
Pd ₁ /Ag(111)	0.05
Pt ₁ /Ag(111)	-0.05
Rh ₁ /Ag(111)	-0.05
Ir ₁ /Cu(111)	-0.06
Pd ₁ /Cu(111)	0.11
Pt ₁ /Cu(111)	0.11
Rh ₁ /Cu(111)	0.07

Table S3. Reaction energies of two surface isolated dopants forming a dimer (E_{Dimer}) .Schematic picture can be found in Figure S1.

Surfaces	E _b	E _{act}	E _{react}	E _{act}	E _{react}	E _{act}	E _{react}
	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)
Cu ₁ /Au(111)	-0.85	1.27	1.24	1.55	1.42	1.66	1.12
Ir ₁ /Au(111)	-0.95	1.29	0.94	0.68	0.18	1.67	1.10
Pd ₁ /Au(111)	-0.67	1.55	1.88	0.82	0.82	1.66	1.11
Pt ₁ /Au(111)	-0.66	1.16	1.05	0.84	0.37	1.66	1.12
Rh ₁ /Au(111)	-0.91	1.21	0.97	0.55	0.47	1.70	1.12
Cu ₁ /Ag(111)	-0.65	1.13	0.37	1.48	1.13	1.66	1.31
Ir ₁ /Ag(111)	-0.75	0.77	-0.04	0.51	-0.16	1.67	1.30
Pd ₁ /Ag(111)	-0.55	1.35	0.69	0.92	0.81	1.66	1.43
Pt ₁ /Ag(111)	-0.46	0.84	0.57	0.79	0.25	1.56	1.00
Rh ₁ /Ag(111)	-0.75	0.75	0.20	0.60	0.27	1.63	1.37
Ir ₁ /Cu(111)	-0.85	0.93	-0.00	0.66	-0.03	1.39	1.05
Pd ₁ /Cu(111)	-0.71	1.42	-0.00	1.13	0.51	1.45	0.76
Pt ₁ /Cu(111)	-0.64	2.00	0.84	0.77	0.15	1.18	0.70
Rh ₁ /Cu(111)	-0.87	1.06	0.00	0.42	0.24	1.33	1.05

Table S4. Calculated binding energy of EtOH (E_b), activation energy barrier (E_{act}), and reaction energy (E_{react}) on the studied fourteen single-atom alloy surfaces.

Figure S1. Schematic pictures of (a) a dopant leaching out from the (111) surface and (b) two surface isolated dopants forming a dimer.

Figure S2. Correlation between (a) O-H activation energy and charge transfer effect and (b) α -C-H activation energy and charge transfer effect.