Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Design, synthesis and lithium-ion storage capability of Al_{0.5}Nb_{24.5}O₆₂

Qingfeng Fu^{a,b}, Renjie Li^b, Xiangzhen Zhu^b, Guisheng Liang^b, Lijie Luo^b, Yongjun

Chen^b, Chunfu Lin*^{a,b}, X.S. Zhao^{a,c}

^a Institute of Materials for Energy and Environment, School of Materials Science and

Engineering, Qingdao University, Qingdao 266071, China.

^b School of Materials Science and Engineering, Hainan University, Haikou 570228,

China.

^c School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane,

QLD 4072, Australia.

* Corresponding author. E-mail address: linchunfu@qdu.edu.cn (C. Lin).

Fig. S1. Crystal structure of Nb₁₆W₅O₅₅.

Fig. S2. Schematic sketch of *in-situ* XRD cell.

Fig. S3. (a) XRD pattern and (b) FESEM image of LiNi_{0.5}Mn_{1.5}O₄.

Fig. S4. XRD patterns of Nb₁₆W₅O₅₅.

The lattice constants of Nb₁₆W₅O₅₅ were refined to be a = 2.97083(42) nm, b = 0.38190(4) nm, c = 2.31409(39) nm and $\beta = 126.546(6)^{\circ}$. Its unit-cell volume was refined to be V = 2.10927(55) nm³.

Fig. S5. XPS spectra of (a) aluminum and (b) niobium elements in $Al_{0.5}Nb_{24.5}O_{62}$ -M

and Al_{0.5}Nb_{24.5}O₆₂-P.

Fig. S6. FESEM image of $Al_{0.5}Nb_{24.5}O_{62}$ -M.

Fig. S7. FESEM image of precipitate after solvothermal reaction.

Fig. S8. (a) Nitrogen adsorption/desorption isotherm and (b) BJH desorption pore size

distribution of Al_{0.5}Nb_{24.5}O₆₂-P.

Fig. S9. (a) HRTEM image, (b) SAED pattern and (c) EDX elemental mapping

images of Al_{0.5}Nb_{24.5}O₆₂-M.

Fig. S10. Electrochemical characterizations of $Nb_{16}W_5O_{55}/Li$ cell: (a) CV curves at 0.2 mV s⁻¹, (b) discharging/charging curves at 0.1C, (c) discharging/charging curves

at various current rates, (d) rate performance, (e) cyclability at 1C, and (f) long-term cyclability at 10C.

Fig. S11. Nyquist plots of $Al_{0.5}Nb_{24.5}O_{62}$ -M/Li and $Al_{0.5}Nb_{24.5}O_{62}$ -P/Li cells (*inset*: selected equivalent circuit), which were recorded in a frequency range of 10^5 - 10^{-2} Hz using a Zahner Zennium electrochemical workstation.

Fig. S11 shows the Nyquist plots of the $Al_{0.5}Nb_{24.5}O_{62}$ -M/Li and $Al_{0.5}Nb_{24.5}O_{62}$ -P/Li cells. Each plot consists of two depressed semicircles and one slope. According to a previous study [S1], the semicircle observed in the high-frequency region refers to the synergistic effect of the Li⁺ desolvation, electron transfer and adsorption, which is denoted as the R_1 /CPE₁ pair in the equivalent circuit (**Fig. S11** *inset*). The other semicircle observed in the medium-frequency region is associated with the Li⁺ insertion at the $Al_{0.5}Nb_{24.5}O_{62}$ -M/Al_{0.5}Nb_{24.5}O₆₂-P particle surface (the R_2 /CPE₂ pair). The slope observed in the low-frequency region corresponds to the Warburg resistance (W), representing the Li⁺ diffusion in $Al_{0.5}Nb_{24.5}O_{62}$ -M/Al_{0.5}Nb_{24.5}O₆₂-P. R_b in the equivalent circuit embodies the Ohmic resistance of the cell, which is predominantly due to the electrolyte. The fitted R_1 and R_2 values for the

 $Al_{0.5}Nb_{24.5}O_{62}$ -M sample are 484 and 1117 Ω , respectively. In contrast, those for the $Al_{0.5}Nb_{24.5}O_{62}$ -P sample were decreased to 170 and 712 Ω . Therefore, the $Al_{0.5}Nb_{24.5}O_{62}$ -P sample exhibited faster Li⁺ desolvation, electron-transfer, adsorption and Li⁺ insertion at the active particle surface, indicating its faster electrochemical kinetics.

Fig. S12. Li^+ diffusion coefficient (D_{Li}) of Nb₁₆W₅O₅₅ calculated from GITT.

porous microspheres with high surface area

Fig. S13. Schematic structural feature of $Al_{0.5}Nb_{24.5}O_{62}$ -P.

Fig. S14. (a) Pristine and two-dimensional *in-situ* XRD spectra of Al_{0.5}Nb_{24.5}O₆₂-M/Li *in-situ* cell with corresponding first discharging curve within 3.0–0.8 V at 0.2C. (b) Variations in lattice constants of Al_{0.5}Nb_{24.5}O₆₂ (first discharging process).

Fig. S15. *Ex-situ* FESEM image of Al_{0.5}Nb_{24.5}O₆₂-P electrode after 500 cycles at 10C.

Fig. S16. Electrochemical characterizations of $\text{LiNi}_{0.5}\text{Mn}_{1.5}\text{O}_4/\text{Li}$ half cell: (a) CV curves at 0.2 mV s⁻¹, (b) charging/discharging curves at 0.1C, (c) charging/discharging curves at various current rates, and (d) rate performance.

Fig. S17. CV curve of $LiNi_{0.5}Mn_{1.5}O_4$ //Al_{0.5}Nb_{24.5}O₆₂-P full cell at 0.2 mV s⁻¹.

Fig. S18. Charging/discharging curves of $LiNi_{0.5}Mn_{1.5}O_4$ //Al_{0.5}Nb_{24.5}O₆₂-P full cell in

various cycles at 1C.

Fig. S19. Charging/discharging curves of LiNi_{0.5}Mn_{1.5}O₄//Al_{0.5}Nb_{24.5}O₆₂-P full cell in

various cycles at 5C.

Fig. S20. (a) Discharging curves and (b) rate performance of

 $LiNi_{0.5}Mn_{1.5}O_4//Al_{0.5}Nb_{24.5}O_{62}$ -P full cell at 0 °C.

atom*	site	x	у	Z
M1	2a	0	0.25	0
M2	4c	0.1150	0	0.0138
M3	4c	0.2419	0	0.0595
M4	4c	0.3692	0	0.1148
M5	4c	0.4979	0	0.1652
M6	4c	0.0917	0	0.1879
M7	4c	0.2211	0	0.2364
M8	4c	0.3463	0	0.2872
M9	4c	0.4754	0	0.3374
M10	4c	0.0697	0	0.3631
M11	4c	0.1959	0	0.4140
M12	4c	0.3210	0	0.4619
M13	4c	0.4485	0	0.4485
01	4c	0.3819	0	0.0132
O2	4c	0.1814	0	0.0363
O3	4c	0.3157	0	0.0872
O4	4c	0.1024	0	0.1026
O5	4c	0.4358	0	0.1364
O6	4c	0.2366	0	0.1415
07	4c	0.0134	0	0.1380
O8	4c	0.3595	0	0.1978
09	4c	0.1487	0	0.2137
O10	4c	0.4922	0	0.2525
011	4c	0.2920	0	0.2633
O12	4c	0.0585	0	0.2734
O13	4c	0.4147	0	0.3074
O14	4c	0.2079	0	0.3503
O15	4c	0.3412	0	0.3815
O16	4c	0.1148	0	0.3981
O17	4c	0.4723	0	0.4336
O18	4c	0.2619	0	0.4402
O19	4c	0.0401	0	0.4627
O20	4c	0.3965	0	0.4851
O21	4c	0.1870	0	0.5037
O22	4c	0.3184	0	0.5651
O23	4c	0.4531	0	0.6209
O24	4c	-0.0017	0	0.6636
O25	4c	0.1373	0	0.7279
O26	4c	0.2647	0	0.7554
O27	4c	0.4244	0	0.8310
O28	4c	0.1276	0	0.9054
O29	4c	0.4866	0	0.9277
O30	4 <i>c</i>	0.2501	0	0.9761
O31	4c	0.0401	0	0.9815

Table S1. Fractional atomic parameters of $Al_{0.5}Nb_{24.5}O_{62}$ with *C2* space group.

 $M = 0.02 A l^{3+} + 0.98 N b^{5+}$

sample	potential at cathodic peak (V)	potential at anodic peak (V)	potential difference (V)
$\begin{array}{c} Al_{0.5}Nb_{24.5}O_{62}\text{-}M\\ (Nb^{4+}\!/Nb^{5+}) \end{array}$	1.606	1.756	0.150
$\begin{array}{c} Al_{0.5}Nb_{24.5}O_{62}\text{-}P\\ (Nb^{4+}\!/Nb^{5+}) \end{array}$	1.616	1.744	0.128
$\begin{array}{c} Al_{0.5}Nb_{24.5}O_{62}\text{-}M\\ (Nb^{3+}\!/Nb^{4+}) \end{array}$	1.198	1.386	0.188
$\begin{array}{c} Al_{0.5}Nb_{24.5}O_{62}\text{-}P\\ (Nb^{3+}\!/Nb^{4+}) \end{array}$	1.130	1.307	0.177

Table S2. Potentials at cathodic/anodic CV peaks and potential differences of $Al_{0.5}Nb_{24.5}O_{62}$ -M/Li and $Al_{0.5}Nb_{24.5}O_{62}$ -P/Li cells at 0.2 mV s⁻¹ (2nd cycle).

References

[S1]M. Nakayama, H. Ikuta, Y. Uchimoto, M. Wakihara, J. Phys. Chem. B, 2003, 107, 10603.