Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting information

Self-supported branched Poly(ethyleneimine) Materials for CO₂ Adsorption from

Simulated Flue Gas

Chun-Jae Yoo, Pavithra Narayanan, Christopher W. Jones*

School of Chemical & Biomolecular Engineering, Georgia Institute of Technology,

311 Ferst Drive NW Atlanta Georgia 30332 United States

cjones@chbe.gatech.edu

Figure S1. Liquid state ¹³C NMR of the b-PEI (60 kda)

Primary : g+h = 1.33+1.18 = 2.51Secondary: (d+e+f)/2 = (1.33+1.52+2.21=5.06)/2 = 2.53Tertiary: (a+b+c)/3 = (1+1.77+1.18=3.95)/3 = 1.316

Primary/ Secondary/Tertiary = 40/40/20

Figure S2. The images of crosslinked PEI adsorbents (A) after 2 days storage in the freezer (B) after collecting from the vial (C) after drying under vacuum at 60 °C

Video S1.

Figure S3. The average pore diameter of the self-supported PEI adsorbents. The average pore size of the material was estimated by using imaging program (Digimizer). (Error bars from the standard deviation of more than 30 pores imaged via microscopy)

Figure S4. The schematic configuration of the ice and the suspension (mixture of PEI and PEGDGE) depending on the freezing temperature (A) -10 $^{\circ}$ C (B) -196 $^{\circ}$ C

Amine	Support	Amine Loading (wt %)	$\begin{array}{ c c } CO_2 \text{ conc} \\ (\%) \end{array}$	Adsorption temp (°C)	Amine efficiency	$\begin{array}{c} CO_2 \text{ capacity} \\ (\text{mmol } CO_2/g) \end{array}$	ref
PEI	MCM-41	50	100	75	0.27	2.54	1
		50	100	50	0.11	1	
		75	100	75	0.21	3 02	
PEI	SBA-15	50	100	25	0.09	0.83	2
1 21		50	100	45	0.18	17	
		50	100	75	0.11	2.04	
		70	100	45	0.17	2	
PEI	SBA-15	50	15	75	0.27	3.18	3
PEI	SBA-15	50	12	75	0.14	1.358	4
		50	12	55	0.14	1 295	
PEI	KIT-6	50	100	75	0.27	3.06	5
PEI	KIT6	50	100	25	0.16	1.79	
PEI	monolith	65	5	75	0.32	3.75	6
PEI	PMMA	40	10	45	0.32	2.4(3.53)	7
PEI	SIO ₂ (cariACT)	40	10	45	0.34	2.55(3.65)	
PEI	SiO ₂ capsule	83	10	75	0.3	4.45 (5.58)	8
PEI	PE-MCM- 41	55	100	25	0.17	1.8	9
		55	100	50	0.22	2.27	
		55	100	75	0.43	4.5	
		55	10	25	0.13	1.36	
		55	10	50	0.22	2.27	
		55	10	75	0.33	3.41	
PEI	Silica monolith	60	100	75	0.21	2.4	10
		60	20	75	0.04	0.5	
		60	100	25	0.09	1	
PEI	Silica monolith	50	100	80	0.39	3.78	11
PEI	Spherical silica foams	60	100	75	0.33	4.27	12
PEI	MCF	50	100	75	0.36	4.11	13
PEI	MCF	50	15	75	0.3	3.45	14
PEI	HMS	45	100	75	0.26	2.7	15
PEI	SBA- 15PLT	55	10	25	0.2	2.56	16
			10	50	0.3	3.775	
			10	75	0.31	3.92	
PEI	SBA-15	48	15	75	0.21	2.38	17

Table S1. Summary of PEI based adsorbents and their CO_2 capacity at given conditions

Figure S5. Amine efficiency of supported PEI adsorbent under various CO₂ concentrations (5-100%)

Figure S6. Normalized CO_2 uptakes along with the increasing number of cycle and fitted exponential decay equation.

References

- 1 X. Xu, C. Song, J. M. Andresen, B. G. Miller and A. W. Scaroni, *Energy and Fuels*, 2002, 16, 1463–1469.
- 2 R. Sanz, G. Calleja, A. Arencibia and E. S. Sanz-Pérez, *Appl. Surf. Sci.*, 2010, **256**, 5323–5328.
- 3 X. Ma, X. Wang and C. Song, J. Am. Chem. Soc., 2009, 131, 5777–5783.
- 4 S. Dasgupta, A. Nanoti, P. Gupta, D. Jena, A. N. Goswami and M. O. Garg, *Sep. Sci. Technol.*, 2009, **44**, 3973–3983.
- 5 W.-J. Son, J.-S. Choi and W.-S. Ahn, *Microporous Mesoporous Mater.*, 2008, **113**, 31–40.
- 6 C. Chen, S.-T. Yang, W.-S. Ahn and R. Ryoo, *Chem. Commun.*, 2009, 3627–3629.
- 7 M. L. Gray, J. S. Hoffman, D. C. Hreha, D. J. Fauth, S. W. Hedges, K. J. Champagne and H. W. Pennline, *Energy & Fuels*, 2009, 23, 4840–4844.
- G. Qi, Y. Wang, L. Estevez, X. Duan, N. Anako, A.-H. A. Park, W. Li, C. W. Jones, E. P. Giannelis, A.-H. Alissa Park, W. Li, C. W. Jones and E. P. Giannelis, *Energy Environ. Sci.*, 2011, 4, 444.
- 9 A. Heydari-Gorji, Y. Belmabkhout and A. Sayari, *Langmuir*, 2011, 27, 12411–12416.
- 10 X. Guo, L. Ding, K. Kanamori, K. Nakanishi and H. Yang, *Microporous Mesoporous Mater.*, 2017, **245**, 51–57.
- 11 T. Witoon and M. Chareonpanich, *Mater. Lett.*, 2012, **81**, 181–184.
- 12 Y. Han, G. Hwang, H. Kim, B. Z. Haznedaroglu and B. Lee, *Chem. Eng. J.*, 2015, 259, 653–662.
- 13 J. Zhao, F. Simeon, Y. Wang, G. Luo and T. A. Hatton, *RSC Adv.*, 2012, **2**, 6509–6519.
- 14 X. Yan, L. Zhang, Y. Zhang, K. Qiao, Z. Yan and S. Komarneni, *Chem. Eng. J.*, 2011, 168, 918–924.
- 15 C. Chen, W.-J. Son, K.-S. You, J.-W. Ahn and W.-S. Ahn, *Chem. Eng. J.*, 2010, 161, 46–52.
- 16 A. Heydari-Gorji, Y. Yang and A. Sayari, *Energy & Fuels*, 2011, 25, 4206–4210.
- 17 X. Yan, L. Zhang, Y. Zhang, G. Yang and Z. Yan, *Ind. Eng. Chem. Res.*, 2011, **50**, 3220–3226.