Electronic Supplementary information (ESI) for

Electrospun fiber based metal-organic framework composite membrane for fast, continuous, and simultaneous removal of insoluble and soluble contaminants from water

Rui Zhao, Yuyang Tian, Shuying Li, Tingting Ma, Hengtao Lei and Guangshan Zhu*

Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China

*Corresponding authors :

Email address: zhugs@nenu.edu.cn.

Fig. S1. Diameter distributions of H_3BTC/PAN FM (a) and PAN@MIL-100(Fe) FM (b).

Fig. S2. TEM images of H_3BTC/PAN FM (a) and PAN@MIL-100(Fe) FM (b). The inset bars are 200 nm.

Fig. S3. EDX spectra of H_3 BTC/PAN FM (a) and PAN@MIL-100(Fe) FM (b, the inset is its Fe elemental mapping).

Fig. S4. SEM image of MIL-100(Fe) growth onto electrospun PAN fibers without H_3BTC .

Fig. S5. XRD patterns of PAN@MIL-100(Fe) FM after the treatment in solutions with different pH values for 3 days.

Fig. S6. Optical images of PAN@MIL-100(Fe) FM which show its good mechanical strength and flexibility.

Fig. S7. SEM images of PAN@MIL-100(Fe) FM from H₃BTC/PAN FM with 5 wt% H₃BTC (a) and 20 wt% H₃BTC (b). (c) Their TGA curves. (d) The adsorption toward AR and VA by PAN@MIL-100(Fe) FM from H₃BTC/PAN FM with different amounts of H₃BTC.

Fig. S8. (a) Removal efficiency, (b) adsorption kinetic curves and (c) the pseudo-second-order kinetic fitting plots toward AR and VA by MIL-100(Fe) powders.

	Pseudo-second-order model			
pollutant	q _e	k ₂	R ²	
	(mg/g)	(g/mg•h)		
AR	131.58	0.23	0.9999	
VA	128.21	0.040	0.9996	

Table S1 Adsorption kinetic parameters of AR and VA adsorption by MIL-100(Fe) powders.

Fig. S9. Molecule sizes of AR and VA from Materials Studio 8.0.

PAN@MIL-100(Fe) FM.						
	Langmu	ir isothern	n	Freundli	ch isotł	nerm
pollutant	q _{max}	b	R ²	K _F	n	R ²
	(mg/g)	(L/mg)				
AR	386.05	0.0942	0.9987	148.60	6.06	0.9235

119.86 5.65 0.8929

321.81 0.1377 0.9914

VA

 Table S2 Adsorption isotherm parameters of AR and VA adsorption by

 PAN@MIL-100(Fe) FM.

Fig. S10. Adsorption isotherms of MIL-100(Fe) powder toward AR (a) and VA (b).

Table S3 Adsorption isotherm parameters of AR and VA adsorption by MIL-100(Fe) powders.

	Langmuir isotherm		Freundlich isotherm			
pollutant	q _{max}	b	R ²	K_{F}	n	R ²
	(mg/g)	(L/mg)				
AR	615.40	0.3947	0.9970	336.69	8.23	0.8155
VA	576.70	0.3354	0.9919	239.47	5.62	0.8601

Fig. S11. Breakthrough curves of PAN@MIL-100(Fe) FM for VA solution with different flow rates.

Fig. S12. Underwater oil contact angles of PAN@MIL-100(Fe) FM from H_3BTC/PAN FM with different amounts of H_3BTC .

Fig. S13. AFM images of PAN@MIL-100(Fe) FM from H_3BTC/PAN FM with 5 wt% H_3BTC (a), 10 wt% H_3BTC (b) and 20 wt% H_3BTC (c). The value of Ra from AFM image can represent the surface roughness.

Separation cycle	Removal efficiency (%)	
1	99.8	
2	99.8	
3	99.8	
4	99.8	
5	99.7	

Table S4 Specific values for Fig. 5f.

Table S5 Specific values for Fig. 6b.

Permeation volume	Removal for AR	Removal for VA	Oil separation
(mL)	(%)	(%)	(%)
10	99.9	99.9	99.9
20	99.8	99.9	99.9
30	99.8	99.7	99.7
40	99.7	99.6	99.4
50	99.8	99.5	99.4
60	99.6	99.4	00.3
70	99.6	99.3	99.3
80	99.5	99.3	99.3
90	99.5	99.2	99.2
100	99.4	99.2	99.1

Fig. S14. UV-Vis spectra of the simulated food wastewater containing 5 mg/L AR, 5 mg/L VA and 1 vol% soybean oil before and after filtration.

Fig. S15. Simultaneous removal performance toward AR, VA and soybean oil by H₃BTC/PAN FM.

Number of cycles	Removal for AR (%)	Removal for VA (%)
1	99.4	99.2
2	99.4	99.2
3	99.3	99.1
4	99.3	99.1
5	99.3	99.1

 Table S6 Specific values for Fig. 6c.

 Table S7 Specific values for Fig. 6d.

Number of cycles	Removal for AR (%)	Removal for VA (%)
1	99.4	99.2
2	99.4	99.2
3	99.3	99.1
4	99.3	99.1
5	99.3	99.1

Fig. S16. SEM image of PAN@MIL-100(Fe) FM after five purification-regeneration cycles.

Fig. S17. (a) Mechanical properties of PAN@MIL-100(Fe) FM after filtration cycles and (b) summarized parameters.

Fig. S18. XRD patterns of PAN@MIL-100(Fe) FM before and after filtration cycles.

Fig. S19. The accumulated Fe ion release concentration in the filtrate during the filtration process.