Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

## Electronic Supplementary Information for

## Healable and Shape Editable Supercapacitors Based on Shape Memory Polyurethanes

Tianqi Li, Xu Fang, Qiang Pang, Weimin Huang, and Junqi Sun\*

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China

\*Corresponding authors. E-mail: sun\_junqi@jlu.edu.cn



**Fig. S1** <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>) of PU network.



**Fig. S2** FTIR spectra of liner PCL, PU and PU-PCL. The following characteristic peaks confirm the chemical structures: 3323 cm<sup>-1</sup> (v(-NH-)), 2945 and 2865 cm<sup>-1</sup> (v(CH<sub>3</sub>, CH<sub>2</sub>)), 1730 cm<sup>-1</sup> (v<sub>as</sub>(C=O)), 1537 cm<sup>-1</sup> (δ(C-N-H)), 1463 cm<sup>-1</sup> (δ(CH<sub>2</sub>)), 1240 and 1101 cm<sup>-1</sup> (v(C-O-C)), 1043 cm<sup>-1</sup> (δ(C-O-C)), 1187 cm<sup>-1</sup> (v(OC-O)).



**Fig. S3** (a) Stress-strain curves of the original and 2 h recontacted PU network samples that were previously cut into two pieces. (b) Stress-strain curves of the original and 2 h healed liner PCL samples that were previously cut into two pieces.



Fig. S4 Schematic illustration of healing process of CNTs/PU-PCL electrode.



Fig. S5 Mechanical properties and self-healing behavior of PAA-PEO hydrogels. (a)
Frequency-dependent (at a strain of 1%) oscillatory shear rheology of the hydrogel.
(b) Strain sweep measurements of PAA-PEO hydrogel at 25 °C (storage modulus G'

and loss modulus G" as a function of strain  $\gamma$ ). (c) Repeated dynamic strain step tests ( $\gamma = 1\%$  or 500%) of PAA-PEO hydrogel at 25 °C.



Fig. S6 Specific capacitance of the supercapacitor at different constant current

densities.



Fig. S7 The Ragone plot of supercapacitor.

The energy density (E, Wh kg<sup>-1</sup>) and power density (P, W kg<sup>-1</sup>) of the supercapacitor were calculated according to the following equations:

$$E = [(C_{\rm sp} \times \Delta V^2)/2] \times (1000/3600)$$

 $P=E/\Delta t$ 

where  $\Delta V$  (V) is the actual voltage excluding IR drop of the discharge process,  $\Delta t$  (s) is the discharge time.



**Fig. S8** (a) Optical microscopic image of the cross-section of the healed supercapacitor. (b) Cross-sectional SEM image of the healed supercapacitor. The dashed line indicates the cut in the original supercapacitor. The squares indicate the defects in the healed region of the supercapacitor



**Fig. S9** Specific capacitance (a) and CV curves (b) of the original supercapacitor before and after different cutting/healing cycles.



**Fig. S10** Experimental and Simulated Nyquist plots of the original supercapacitor. Inset indicates the equivalent circuit used for simulating the experimental impedance data.

**Table S1** The resistance values for the original supercapacitor and the samesupercapacitor after different cutting/healing cycles.

| Sample                        | <i>R</i> <sub>s</sub> (Ω) | <i>R</i> <sub>ct</sub> (Ω) |
|-------------------------------|---------------------------|----------------------------|
| Original                      | 1.16                      | 1.74                       |
| After 1 <sup>st</sup> healing | 1.41                      | 1.99                       |
| After 3 <sup>rd</sup> healing | 1.52                      | 2.68                       |
| After 5 <sup>th</sup> healing | 1.64                      | 3.16                       |



**Fig. S11** (a) Optical images of the original supercapacitor and bent supercapacitor (~180°). (b) Specific capacitance retention of the supercapacitor as a function of repeated bending and recovery cycles.