Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

## **Supplementing Information**

## Hunting for Advanced High-Energy-Density Materials with Well-Balanced Energy and Safety through Energetic Host-Guest Inclusion Strategy

Yi Wang,<sup>1</sup> Siwei Song,<sup>1</sup> Chuan Huang,<sup>1</sup> Xiujuan Qi,<sup>2</sup> Kangcai Wang,<sup>1</sup> Yuji Liu,<sup>1</sup> and Qinghua Zhang<sup>1,\*</sup>

\*Corresponding Email: qinghuazhang@caep.cn



Fig. S1. Crystal structural analysis on ICM-102 monohydrate. (A) 3D crystal structure of ICM-102 monohydrate (left) and 2D molecular sheet of ICM-102 monohydrate in crystal (right), (B) the size of supramolecular void fabricated by four ICM-102 molecules, (C) the sizes of water (H<sub>2</sub>O), hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), nitrate anion (NO<sub>3</sub><sup>-</sup>) and perchloric acid anion (ClO<sub>4</sub><sup>-</sup>).

**Table S1. Crystallographic data for HGI-1**. Single crystal X-ray diffraction data was collected on an Oxford Xcalibur diffratometer with Mo- $K_{\alpha}$  monochromated radiation ( $\lambda = 0.71073$  Å). The crystal structures were solved by direct methods.<sup>1</sup> The structures were refined on  $F^2$  by full-matrix least-squares methods using the SHELXTL script package. All non-hydrogen atoms were refined anisotropoically.

| CODO                                | 1021/20                                            |
|-------------------------------------|----------------------------------------------------|
|                                     | 1831628                                            |
| Formula                             | $C_4H_6N_6O_4 \cdot 0.5H_2O_2$                     |
| Mr                                  | 219.16                                             |
| Crystal system                      | monoclinic                                         |
| Space group                         | C 2/c                                              |
| <i>a</i> [Å]                        | 14.128(7)                                          |
| <i>b</i> [Å]                        | 14.696(8)                                          |
| <i>c</i> [Å]                        | 7.415(4)                                           |
| α [°]                               | 90                                                 |
| β [°]                               | 98.866(6)                                          |
| γ [°]                               | 90                                                 |
| V [Å <sup>3</sup> ]                 | 1521.1(14)                                         |
| Ζ                                   | 8                                                  |
| <i>T</i> (K)                        | 100                                                |
| $\rho$ [g cm <sup>-3</sup> ]        | 1.914                                              |
| Mu [mm <sup>-1</sup> ]              | 0.174                                              |
| F(000)                              | 904                                                |
| θ [°]                               | 2.012 to 27.480                                    |
| index range                         | $-18 \le h \le 18$                                 |
|                                     | $-18 \le k \le 18$                                 |
|                                     | $-9 \le 1 \le 9$                                   |
| reflections collected               | 4861                                               |
| independent reflections             | 1714 [ $R_{int} = 0.0339$ , $R_{sigma} = 0.0436$ ] |
| data/restraints/parameters          | 1714/14/157                                        |
| GOF on F <sup>2</sup>               | 1.121                                              |
| $R1 [I > 2\sigma(I)]$               | 0.0535                                             |
| $wR2 [I > 2\sigma(I)]$              | 0.1555                                             |
| R1(all data)                        | 0.0718                                             |
| wR2(all data)                       | 0.1903                                             |
| largest diff. peak and hole [e Å-3] | 0.51/-0.33                                         |

**Table S2. Crystallographic data for HGI-2**. Single crystal X-ray diffraction data was collected on an Oxford Xcalibur diffratometer with Mo- $K_{\alpha}$  monochromated radiation ( $\lambda = 0.71073$  Å). The crystal structures were solved by direct methods.<sup>1</sup> The structures were refined on  $F^2$  by full-matrix least-squares methods using the SHELXTL script package. All non-hydrogen atoms were refined anisotropoically.

| CCDC                                | 1887848                                            |
|-------------------------------------|----------------------------------------------------|
| Formula                             | $C_4H_6N_6O_4$ •HNO <sub>3</sub>                   |
| Mr                                  | 265.17                                             |
| Crystal system                      | orthorhombic                                       |
| Space group                         | Pbca                                               |
| <i>a</i> [Å]                        | 11.239(3)                                          |
| <i>b</i> [Å]                        | 11.869(3)                                          |
| <i>c</i> [Å]                        | 13.511(3)                                          |
| α [°]                               | 90                                                 |
| β [°]                               | 90                                                 |
| γ [°]                               | 90                                                 |
| V [Å <sup>3</sup> ]                 | 1802.2(7)                                          |
| Ζ                                   | 8                                                  |
| $T(\mathbf{K})$                     | 173                                                |
| ho[g cm <sup>-3</sup> ]             | 1.955                                              |
| Mu [mm <sup>-1</sup> ]              | 0.184                                              |
| F(000)                              | 1088                                               |
| θ [°]                               | 3.015 to 25.123                                    |
| index range                         | $-13 \le h \le 13$                                 |
|                                     | $-14 \le k \le 13$                                 |
|                                     | $-16 \le 1 \le 13$                                 |
| reflections collected               | 12301                                              |
| independent reflections             | 1577 [ $R_{int} = 0.0801$ , $R_{sigma} = 0.0507$ ] |
| data/restraints/parameters          | 1577/21/191                                        |
| GOF on F <sup>2</sup>               | 1.042                                              |
| <i>R</i> 1 [ Ι>2σ(Ι)]               | 0.0447                                             |
| <i>wR</i> 2 [ Ι>2σ(Ι)]              | 0.1137                                             |
| R1(all data)                        | 0.0625                                             |
| wR2(all data)                       | 0.1268                                             |
| largest diff. peak and hole [e Å-3] | 0.492/-0.295                                       |

**Table S3. Crystallographic data for HGI-3**. Single crystal X-ray diffraction data was collected on an Oxford Xcalibur diffratometer with Mo- $K_{\alpha}$  monochromated radiation ( $\lambda = 0.71073$  Å). The crystal structures were solved by direct methods.<sup>1</sup> The structures were refined on  $F^2$  by full-matrix least-squares methods using the SHELXTL script package. All non-hydrogen atoms were refined anisotropoically.

| CCDC                                             | 1887847                                         |
|--------------------------------------------------|-------------------------------------------------|
| Formula                                          | $C_4H_6N_6O_4$ •HClO <sub>4</sub>               |
| Mr                                               | 302.61                                          |
| Crystal system                                   | orthorhombic                                    |
| Space group                                      | Pbca                                            |
| <i>a</i> [Å]                                     | 12.410(2)                                       |
| <i>b</i> [Å]                                     | 9.9590(19)                                      |
| <i>c</i> [Å]                                     | 16.305(3)                                       |
| α [°]                                            | 90                                              |
| β [°]                                            | 90                                              |
| γ [°]                                            | 90                                              |
| V [Å <sup>3</sup> ]                              | 2015.2(7)                                       |
| Ζ                                                | 8                                               |
| <i>T</i> (K)                                     | 173                                             |
| ho[g cm <sup>-3</sup> ]                          | 1.995                                           |
| Mu [mm <sup>-1</sup> ]                           | 0.439                                           |
| F(000)                                           | 1232                                            |
| θ [°]                                            | 2.99 to 22.48                                   |
| index range                                      | $-14 \le h \le 15$                              |
|                                                  | $-12 \le k \le 12$                              |
|                                                  | $-20 \le 1 \le 12$                              |
| reflections collected                            | 9864                                            |
| independent reflections                          | 2146 [ $R_{int}$ =0.0800, $R_{sigma}$ = 0.0600] |
| data/restraints/parameters                       | 2146/1/176                                      |
| GOF on $F^2$                                     | 1.045                                           |
| <i>R</i> 1 [ I>2σ(I)]                            | 0.0456                                          |
| <i>wR</i> 2 [ Ι>2σ(Ι)]                           | 0.1001                                          |
| R1(all data)                                     | 0.0685                                          |
| wR2(all data)                                    | 0.1124                                          |
| largest diff. peak and hole [e Å <sup>-3</sup> ] | 0.405/-0.467                                    |

| Donor-H-Acceptor            | D-H (Å) | H…A (Å) | D…A (Å)  | ∠D-H…A (°) |
|-----------------------------|---------|---------|----------|------------|
| N(1)-H(1A) <sup></sup> O(2) | 0.88    | 2.26    | 2.594(3) | 103        |
| N(1)-H(1A) <sup></sup> O(4) | 0.88    | 2.11    | 2.822(3) | 137        |
| N(1)-H(1B) <sup></sup> O(1) | 0.88    | 2.29    | 2.625(3) | 102        |
| N(1)-H(1B)-O(5)             | 0.88    | 2.02    | 2.834(5) | 152        |
| N(2)-H(2A)···O(1)           | 0.88    | 2.24    | 2.610(3) | 105        |
| N(2)-H(2A)···O(2)           | 0.88    | 1.92    | 2.716(3) | 149        |
| N(2)-H(2B)···O(3)           | 0.88    | 2.01    | 2.618(3) | 125        |
| N(2)-H(2B) <sup></sup> O(3) | 0.88    | 2.30    | 3.133(3) | 158        |
| N(4)-H(4A)···O(4)           | 0.85(3) | 2.03(3) | 2.609(3) | 125(2)     |
| N(4)-H(4A)-O(5)             | 0.85(3) | 2.43(3) | 3.119(5) | 140(2)     |
| N(4)-H(4B)···O(2)           | 0.90(3) | 2.21(3) | 2.593(3) | 105(2)     |

1.94(3)

2.757(3)

150(3)

Table S4. The specific parameters of hydrogen bonds of HGI-1.

0.90(3)

N(4)- H(4B)<sup>...</sup>O(1)



| Donor-HAcceptor             | D-H (Å) | H…A (Å) | D…A (Å)  | ∠D-H <sup></sup> A (°) |
|-----------------------------|---------|---------|----------|------------------------|
| N(2)-H(2A)···O(3)           | 0.88(4) | 2.20(3) | 2.582(3) | 106(3)                 |
| N(2)-H(2A) ···O(1)          | 0.88(4) | 2.59(3) | 3.198(3) | 127(3)                 |
| N(2)-H(2A)···O(2)           | 0.88(4) | 2.59(4) | 3.461(3) | 169(2)                 |
| N(2)-H(2B)···O(2)           | 0.90(4) | 1.94(4) | 2.618(3) | 130(3)                 |
| N(2)-H(2B)-O(6)             | 0.90(4) | 2.57(3) | 3.212(3) | 129(3)                 |
| N(2)-H(2B)···O(7)           | 0.90(4) | 2.43(4) | 3.149(3) | 137(3)                 |
| N(2)-H(2B)···N(1)           | 0.90(4) | 2.57(4) | 2.924(3) | 104(2)                 |
| O(4)-H(4)···O(5)            | 0.84(4) | 1.77(4) | 2.601(3) | 169(4)                 |
| N(4)-H(4A)···O(4)           | 0.87(2) | 2.39(4) | 2.681(3) | 100(3)                 |
| N(4)-H(4A) <sup></sup> N(6) | 0.87(2) | 2.39(4) | 2.843(3) | 113(4)                 |
| N(4)-H(4B)···O(3)           | 0.86(2) | 2.35(4) | 2.654(3) | 101(2)                 |
| N(6)-H(6A)···O(4)           | 0.82(2) | 2.20(3) | 2.552(3) | 106(3)                 |
| N(6)-H(6A) <sup></sup> N(4) | 0.82(2) | 2.14(3) | 2.843(3) | 143(3)                 |
| N(6)-H(6B) <sup></sup> O(1) | 0.90(4) | 1.94(3) | 2.597(3) | 129(3)                 |
| N(6)-H(6B) <sup></sup> N(1) | 0.90(4) | 2.59(3) | 2.907(3) | 102(2)                 |
| N(6)-H(6B)-O(5)             | 0.90(4) | 2.28(3) | 3.041(3) | 142(3)                 |

Table S5. The specific parameters of hydrogen bonds of HGI-2.



| Donor-HAcceptor             | D-H (Å) | H…A (Å) | D…A (Å)  | ∠D-H…A (°) |
|-----------------------------|---------|---------|----------|------------|
| O(1)-H(1)···O(2)            | 0.87(3) | 1.59(3) | 2.465(3) | 175(3)     |
| O(1)-H(1)···N(2)            | 0.87(3) | 2.44(3) | 3.180(3) | 144(3)     |
| N(1)-H(1A) <sup></sup> O(2) | 0.86    | 2.33    | 2.653(3) | 102        |
| N(1)-H(1A)···O(7)           | 0.86    | 2.09    | 2.952(3) | 175        |
| N(1)-H(1B)-O(1)             | 0.86    | 2.32    | 2.642(3) | 103        |
| N(1)-H(1B)-O(6)             | 0.86    | 2.10    | 2.905(3) | 155        |
| N(3)-H(3A)···O(2)           | 0.86    | 2.21    | 2.591(3) | 106        |
| N(3)-H(3A)···O(2)           | 0.86    | 2.18    | 2.824(3) | 131        |
| N(3)-H(3A) <sup></sup> O(5) | 0.86    | 2.46    | 3.160(3) | 138        |
| N(3)-H(3B) <sup></sup> O(3) | 0.86    | 2.01    | 2.598(3) | 125        |
| N(3)-H(3B) <sup></sup> O(7) | 0.86    | 2.48    | 3.057(3) | 125        |
| N(5)-H(5A) <sup></sup> O(1) | 0.86    | 2.27    | 2.636(3) | 106        |
| N(5)-H(5A)-O(8)             | 0.86    | 2.57    | 3.036(3) | 115        |
| N(5)-H(5A)-O(3)             | 0.86    | 2.26    | 2.842(3) | 125        |
| N(5)-H(5B)-O(4)             | 0.86    | 2.02    | 2.616(3) | 126        |

Table S6. The specific parameters of hydrogen bonds of HGI-3.





**Figure S2. Crystal structural analysis on HGI-1, HGI-2 and HGI-3.** (A) Interlamellar spacing and hydrogen bonds in the 2D molecular sheet in HGI-1 crystal. (B) Interlamellar spacing and hydrogen bonds in the 2D molecular sheet in HGI-2 crystal. (C) Interlamellar spacing and hydrogen bonds in the 2D molecular sheet in HGI-3 crystal.

|         | $T_{d}^{a}$ | $ ho^{ m b}$          | $\Delta_f H_m^c$        | $P^{\mathrm{d}}$ | $v_{\rm D}{}^{\rm e}$ | $\mathbf{IS}^{\mathrm{f}}$ | $FS^{g}$ | $OB^{h}$ |
|---------|-------------|-----------------------|-------------------------|------------------|-----------------------|----------------------------|----------|----------|
|         | (°C)        | (g cm <sup>-3</sup> ) | (kJ mol <sup>-1</sup> ) | (GPa)            | (m s <sup>-1</sup> )  | (J)                        | (N)      | (%)      |
| HGI-1   | 186         | 1.915 <sup>i</sup>    | -40.3                   | 34.8             | 9124                  | 24                         | >360     | -47.5    |
| HGI-2   | 177         | 1.955 <sup>j</sup>    | -56.15                  | 39.1             | 9251                  | 8                          | 168      | -27.2    |
| HGI-3   | 233         | 1.995 <sup>j</sup>    | 1.24                    | 42.5             | 9495                  | 14                         | 216      | -15.9    |
| FOX-7   | 220         | 1.88                  | -118.9                  | 35.9             | 9000                  | 24.7                       | >360     | -21.6    |
| RDX     | 210         | 1.80                  | 86.3                    | 34.9             | 8795                  | 7.5                        | 120      | -21.6    |
| HMX     | 279         | 1.90                  | 116.1                   | 39.2             | 9144                  | 7.5                        | 120      | -21.7    |
| ε-CL-20 | 215         | 2.04                  | 365.4                   | 46.7             | 9445                  | 4                          | 48       | -11.0    |

Table S7. Physical properties of HGI-1, HGI-2, HGI-3 and the comparison with FOX-7, RDX, HMX and ε-CL-20.

<sup>a)</sup> Onset decomposition temperature; <sup>b)</sup> Measured density by using a gas pycnometer at 298 K; <sup>c)</sup> Heat of formation; <sup>d)</sup> Detonation pressure calculated by using EXPLO5/6.02; <sup>e)</sup> Detonation velocity calculated by using EXPLO5/6.02; <sup>f)</sup> Impact sensitivity evaluated by a standard BAM fall-hammer method; <sup>g)</sup> Friction sensitivity evaluated by a BAM friction tester; <sup>h)</sup> Oxygen balance based on CO<sub>2</sub> for C<sub>a</sub>H<sub>b</sub>N<sub>c</sub>O<sub>d</sub>Cl<sub>e</sub>: OB (%) =1600×(d-a-(b-e)/2)/*Mw*.<sup>i)</sup> Crystal density at 100 K;<sup>j)</sup> Crystal density at 173 K.

The theoretical calculations on the solid-state heat of formation of HGI-1, HGI-2 and HGI-3. Because these three host-guest inclusion materials all contain two components (ICM-102 and the corresponding oxidant molecules) in their crystals, we consider them as a whole system to calculated their solid heat of formations ( $\Delta_f$ H). Detailed calculation processes are presented by the following example of HGI-1.

Theoretical calculations were performed by using the Gaussian 09 (Revision D.01) suite of scripts<sup>2</sup>. The geometric optimization and frequency analyses were completed by using the B3LYP functional with the 6-31+G\*\* basis set. Single energy points were calculated at the MP2/6-311++G\*\* level of theory. For all of the compounds, the optimized structures were characterized to be true local energy minima on the potential-energy surface without imaginary frequencies. The isodesmic reaction was carried out to obtain the gas-phase heat of formation of molecule ICM-102 (Fig. S3A). The gas-phase enthalpies of the building-block molecules were obtained by using the atomization method with the G2 ab initio calculations. For HGI-1, the solid-state heat of formation (HOF,  $\Delta_f$ H°) was calculated based on a Born–Haber energy cycle<sup>3</sup> (Fig. S3B) with following simplified calculation Equation:

 $\Delta_{f}H^{\circ}$  (HGI-1, 298K) =  $\Delta_{f}H^{\circ}$ (HGI-1, 298K) + 0.5 $\Delta_{f}H^{\circ}$ (H<sub>2</sub>O<sub>2</sub>, 298K) –  $\Delta H_{sub}$ 

The heat of sublimation can be estimated using the DFT method with the GGA-RPBE (revised Perdew-Burke-Ernzerhof) exchange-correlation functional in Dmol3 program<sup>4-5</sup>.



**Fig. S3**. Theoretical calculations on the solid-state heat of formation of HGI-1. (A) Isodesmic reaction of molecule ICM-102. (B) Born–Haber cycle for the formation of HGI-1.



**Fig. S4. Thermogravimetry (TG) and differential scanning calorimetry (DSC) curves of HGI-1, HGI-2 and HGI-3**. (A) Thermogravimetry (TG) and differential scanning calorimetry (DSC) curves of HGI-1. (B) Thermogravimetry (TG) and differential scanning calorimetry (DSC) curves of HGI-2. (C) Thermogravimetry (TG) and differential scanning calorimetry (DSC) curves of HGI-3.

Table S8. Effect of replacing ammonium perchlorate (AP) with HGI-3 on the energy characteristics of GAP (GAP 10 % / Al 5 % / AP 60 % / RDX 25 %) propellant<sup>6</sup>.

| GAP | Al  | AP  | RDX | HGI-3 | I <sub>sp</sub> /(N s kg <sup>-1</sup> ) | C*/(m s <sup>-1</sup> ) | T <sub>c</sub> /K | M <sub>c</sub> |
|-----|-----|-----|-----|-------|------------------------------------------|-------------------------|-------------------|----------------|
| (%) | (%) | (%) | (%) | (%)   | •                                        |                         |                   |                |
| 10  | 5   | 60  | 25  | 0     | 2568.35                                  | 1477.7                  | 3359.9            | 25.88          |
| 10  | 5   | 55  | 25  | 5     | 2583.45                                  | 1491.3                  | 3389.4            | 25.68          |
| 10  | 5   | 50  | 25  | 10    | 2593.06                                  | 1504.8                  | 3410.8            | 25.47          |
| 10  | 5   | 45  | 25  | 15    | 2599.24                                  | 1517.1                  | 3425.2            | 25.25          |
| 10  | 5   | 40  | 25  | 20    | 2602.77                                  | 1528.1                  | 3432.9            | 25.01          |
| 10  | 5   | 35  | 25  | 25    | 2604.34                                  | 1537.7                  | 3434.6            | 24.76          |
| 10  | 5   | 30  | 25  | 30    | 2604.24                                  | 1546.0                  | 3430.7            | 24.51          |
| 10  | 5   | 25  | 25  | 35    | 2602.77                                  | 1553.1                  | 3421.5            | 24.25          |
| 10  | 5   | 20  | 25  | 40    | 2600.22                                  | 1558.9                  | 3407.8            | 23.98          |
| 10  | 5   | 15  | 25  | 45    | 2596.49                                  | 1563.6                  | 3389.5            | 23.72          |

## References

1. Cox, J. D.; Wagman, D. D.; Medvedev, V. A. *CODATA Key Values for Thermodynamics*, Hemisphere Publishing Corp, New York, **1989**.

- 2. Frisch, M. J. et al. Gaussian 09, Revision A.01; Gaussian, Inc.: Wallingford, CT, 2009.
- 3. Cox, J. D.; Wagman, D. D.; Medvedev, V. A. CODATA Key Values for Thermodynamics,
- Hemisphere Publishing Corp, New York, 1989.
- 4. B. Delley, J. Chem. Phys. 1990, 92, 508-517.
- 5. B. Delley, J. Chem. Phys. 2000, 113, 7756-7764.
- 6. M. Li, F. -Q. Zhao, Y. Luo, S. -Y. Xu and E. -G. Yao, Chin. J. Energy Mater., 2014, 22, 286-290.