Electronic Supplementary Information

Experimental section

Materials: Lanthanum acetate hydrate ($C_6H_9O_6La \cdot xH_2O$), sodium fluoride (NaF), sodium citrate dehydrate ($C_6H_5Na_3O_7 \cdot 2H_2O$), Lithium perchlorate (LiClO₄), nitroferricyanide (III) dihydrate ($Na_2Fe(CN)_5NO \cdot 2H_2O$), sodium sulfate (Na_2SO_4), and Nafion (5wt%) sodium were purchased from Aladdin Ltd. in Shanghai. Para-(dimethylamino) benzaldehyde ($C_9H_{11}NO$), sodium salicylate ($C_7H_5O_3Na$), hydrazine hydrate ($N_2H_4 \cdot H_2O$), sodium hypochlorite (NaClO), sodium hydroxide (NaOH), hydrochloric acid (HCl), ethanol (CH₃CH₂OH), and carbon paper (CP; TGP-H-060) were bought from Beijing Chemical Corporation. The ultrapure water was purified through a Millipore system used throughout all experiments.

Sample preparation: Briefly, $C_6H_9O_6La \cdot xH_2O$ (2 mmol) dissolved in 10 mL water and added 20 mL aqueous solution containing 2 mmol of $C_6H_5Na_3O_7 \cdot 2H_2O$. The solution was stirred vigorously for 30 min and 30 mL of NaF (25 mmol) solution was introduced into the above solution. Then the mixture was sealed in a 100 mL Teflon-lined autoclave and maintained at 180 °C for 24 h. After the autoclave cooled down at room temperature naturally, the resulting product was collected by centrifugation, and washed with water and ethanol for several times, followed by drying at 80 °C for 12 h under vacuum conditions. The La₂O₃ was prepared by the above method without addition of NaF, then annealed at 700 °C for 4 h.

Characterizations: XRD data were obtained from a LabX XRD-6100 X-ray diffractometer with Cu Ka radiation (40 kV, 30 mA) of wavelength 0.154 nm (SHIMADZU, Japan). SEM images were collected on a field-emission scanning electron microscopy (HITACHI SU8100, Tokyo, Japan). TEM images were collected on a transmission electron microscopy (HITACHI H-8100, Tokyo, Japan). AFM images were acquired on a Bruker MultiMode-8 atomic force microscopy (Bruker, USA). Raman spectra were obtained by a Renishaw InVia confocal Raman microprobe under 532 nm laser excitation. XPS measurements were performed on an ESCALABMK II X-ray photoelectron spectrometer using Mg as the exciting source. The absorbance data of spectrophotometer were collected on a SHIMADZU UV-2700 ultravioletvisible (UV-Vis) spectrophotometer. The ion chromatography data were collected on Thermofisher ICS 5000 plus using the dual temperature heater, injection valve, conductivity detector, AERS 500 Anions suppressor. A gas chromatograph (SHIMADZU, GC-2014C) equipped with MolSieve 5A column and Ar carrier gas was used for H₂ quantifications. ¹H NMR experiments were carried out at 303 K for 5% w/v sample solution in DMSO-d6. The spectral windows were set to 12.5 kHz (25 ppm), a total of 16 scans were recorded, a $\pi/2$ pulse length of 11.6 µs and 64 K data points with 3 s recycle delay for each sample. Topspin software version is 3.5 pl6. All ¹H chemical shifts are referenced to the resonances of DSS standard ($\delta = 0.00$).

Electrocatalytic N_2 *reduction measurements:* The N₂ reduction experiments were carried out in a two-compartment cell under ambient condition, which was separated by Nafion 117 membrane. The membrane was treated in H₂O₂ (5%) aqueous solution at 80 °C for 1 h and dipped in 0.1 M H₂SO₄ at 80 °C for another 1 h. And finally, the membrane was treated in ultrapure water at 80 °C for 6 h. The electrochemical measurements were conducted on a CHI660E electrochemical analyzer (CH Instruments, China). A three-electrode system was used to test the electrocatalytic performance in 0.5 M LiClO₄ (30 mL) at controllable applied potentials using LaF₃ deposited on CP (LaF₃/CP; LaF₃ loading: 0.1 mg cm⁻²; CP area: 1 x 1 cm²) as the working electrode, Ag/AgCl (filled with saturated KCl solution) as the reference electrode, and graphite rod as the counter electrode. All potentials were reported on a RHE scale. For comparison, La₂O₃/CP was also prepared using the same catalyst loading. The potentials reported in this work were converted to RHE scale via calibration with the following equation: *E* (vs RHE) =*E* (vs Ag/AgCl) + 0.197 + 0.059 × pH. For N₂ reduction experiments, the electrolyte solution (0.5 M LiClO₄) was bubbled with N₂ for 30 min before the measurement.

Determination of NH_3 : Concentration of produced NH_3 was determined by spectrophotometry measurement with indophenol indicator.¹ In detail, 4 mL of post-tested solution was got from the electrochemical reaction vessel. Then 50 µL of NaClO (4.5%) and NaOH (0.75 M), 500 µL of $C_7H_5O_3Na$ (0.4 M) and NaOH (0.32 M) and 50 µL of 1 wt% $Na_2Fe(CN)_5NO\cdot 2H_2O$ were added into the above solution. Absorbance measurements were performed after 1 h in dark. The concentration-absorbance curve was calibrated using the standard NH_4Cl solution with NH_3 concentrations of 0.0, 0.15, 0.20, 0.30, 0.50, and 0.60 µg mL⁻¹ in 0.5 M LiClO₄. Typically, 500 µg mL⁻¹ NH_3 solution was prepared (0.786 g NH_4Cl dissolved in 0.5 M LiClO₄) and diluted to 5 µg mL⁻¹. Then, 0.0, 0.3, 0.4, 0.6, 1.0, and 1.2 mL NH_3 solution with concentration-absorbance curve was calibrated using Na_2SO_4 electrolyte and concentration-absorbance curve was calibrated using the standard NH_4Cl solution with NH_3 concentration of 5.0.10, 0.15, 0.20, and 0.30 µg mL⁻¹ in 0.1 M Na_2SO_4 . The fitting curves show good linear relation of absorbance value with NH_3 concentration by three times independent calibrations.

Determination of N_2H_4 : The N_2H_4 presented in the electrolyte was estimated by the method of Watt and Chrisp². A mixed solution of C₉H₁₁NO (5.99 g), HCl (concentrated, 30 mL) and

ethanol (300 mL) was used as a color reagent. Typically, 5 mL electrolyte was removed from the cathodic chamber, after that, added into 5 mL above prepared color reagent and stirring 20 min at room temperature. The absorbance of the resulting solution was measured at 455 nm. The concentration absorbance curves were calibrated using standard N₂H₄ solution with a series of concentrations. The fitting curve shows good linear relation of the absorbance with N₂H₄ concentration (y = 0.748 x + 0.033, R² = 0.999).

*Determination of FE and NH*₃ *yield:* The FE for N₂ reduction was defined as the amount of electric charge used for synthesizing NH₃ divided the total charge passed through the electrodes during the electrolysis. The total amount of NH₃ produced was measured using colorimetric methods. Assuming three electrons were needed to produce one NH₃ molecule, the FE could be calculated as follows:

$$FE (NH_3) = 3 \times F \times [NH_3] \times V / (17 \times Q) \times 100\%$$

The rate of NH₃ formation was calculated using the following equation:

NH₃ yield = $[NH_3] \times V / (m_{cat.} \times t)$

The amount of NH₃ was calculated as follows:

$$m_{NH3} = [NH_3] \times V$$

Where F is the Faraday constant, $[NH_3]$ is the measured NH_3 concentration, V is the volume of the electrolyte in the cathodic chamber, Q is the total quantity of applied electricity, t is the reduction time, and $m_{cat.}$ is the loaded mass of catalyst on carbon paper.

The FE of H₂ was calculated as below:

Where V_{H2} is the volume concentration of H_2 in the exhaust gas from the electrochemical cell (GC data), G is the gas flow rate (mL min⁻¹), Q is the total quantity of applied electricity, $p_0 = 1.01 \times 10^5$ Pa, T = 298.15 K, and R = 8.314 J mol⁻¹ K⁻¹.

Calculation details: First-principles calculations based DFT were performed with the generalized gradient approximation (GGA)³ in the form of the Perdew, Burke, and Ernzerhof (PBE)⁴ exchange-correlation functional, as implemented in the Dmol³ package.^{3,5} A six atom layers (111), (300), (1-10), (100), (001), and (110) surfaces of LaF₃ were modelled with 20 Å vacuum space to avoid the interaction form nearby layers. Layers 1 to 2 are surface layers, layers 3 to 5 are central layers. Structural relaxation was performed until the convergence criteria for energy were set to be 10^{-5} eV, and 0.004 Ha Å⁻¹ was adopted for the total energy calculations. The N₂ dissociation minimum energy path (MEP) was obtained by LST/QST

tools in DMol³ code.⁶ The Brillouin zone integration was performed with $3 \times 3 \times 2$ Γ -centred Monkhorst-Pack k-point meshes in geometry optimization. We examined a series of facets of LaF₃, including (300), (111), (1-10), (100), (001), and (110).

Frequencies of each complex were calculated after geometry optimization, and the free energy was obtained as follows:

$$\triangle G = \triangle E + \triangle ZPE - T\triangle S + \triangle G_u + \triangle G_{pH}$$

where $\triangle E$, $\triangle ZPE$ and $\triangle S$ are the difference in DFT-calculated total energy change, zeropoint energy and the change in entropy between the products and reactants, respectively. T is the temperature (298.15 K). $\triangle G_U = -neU$, where *n* is the number of transferred charge, and U is the electrode potential with respect to the normal hydrogen electrode. $\triangle G_{pH}$ is the correction H⁺ free energy by the concentration, which can be calculated through $\triangle G_{pH} =$ $0.059 \times pH$ (the value of pH is assumed to be zero in this work). The N₂ adsorption energy is defined as:

$$E_{\rm ads} = E_{\rm N2/substrate} - E_{\rm substrate} - E_{\rm N2}$$

Fig. S1. XRD patterns of La₂O₃.

Fig. S2. (a) TEM and (b) HRTEM images of La₂O₃.

Fig. S3. (a) Raman spectrum for LaF₃. (b) XPS survey spectrum for LaF₃. XPS spectra in the (c) La 3d and (d) F 1s regions for LaF₃.

Fig. S4. Atomic three-view of (a) (111), (b) (300), and (c) (1-10) surfaces of LaF₃. Atomic configuration diagram of perfect march of perpendicular between (c) (300) and (111) surface, (d) (1-10), and (111) surface of LaF₃. Based on the HRTEM, SAED and the atom model, the LaF₃ nanoplate preferably grow along the $\langle 111 \rangle$ direction. The (111), (300), and (1-10) surfaces are identified as another highly exposed surfaces for the LaF₃ nanoplate according to the angle formula of hexagonal crystal surface and the atomic model, which are perpendicular to the (111) surface.

Fig. S5. (a) Calculated N_2 adsorption energy for end-on and side-on configurations on LaF₃ (111), (300), and (1-10) surfaces at 298.15 K. (b) DFT-calculated free energy pathways of HER on the (111), (300), (1-10), (100), (110), and (001) surfaces of LaF₃ and La₂O₃ at surface potential of 0 V under 298.15 K. Insets are the corresponding optimized atomic structures.

Fig. S6. N \equiv N triple bond lengths after adsorbed in (111), (300), (1-10), (100), (110), and (001) surfaces of LaF₃ and La₂O₃. The results indicate that LaF₃ exhibits higher N \equiv N triple bond activation performance than La₂O₃.

Fig. S7. LSV curves of LaF_3/CP and La_2O_3/CP in Ar-saturated 0.5 M LiClO₄ with a scan rate of 2 mV s⁻¹.

Fig. S8. (a) UV-Vis spectra of various NH_3 concentrations (mother solution: 0.5 M LiClO₄) after incubated for 1 h at room temperature. (b) Calibration curve used for calculation of NH_3 concentrations.

Fig. S9. (a) UV-Vis absorption spectra of various N_2H_4 concentrations after incubated for 20 min at room temperature. (b) Calibration curve used for estimation of N_2H_4 concentration.

Fig. S10. (a) Amount of evolved H_2 on LaF₃/CP determined by gas chromatography from theheadspace of the cell in N2-saturated 0.5 M LiClO4 at various potentials. (b) The calculatedFEsofHERandNRR.

Fig. S11. (a) UV-Vis absorption spectra of the electrolytes coloured with indophenol indicator after electrolysis using different electrodes. (b) Amount of NH_3 generated with bare CP, La_2O_3/CP , and LaF_3/CP at -0.45 V for 2 h.

Fig. S12. (a) Ion chromatography data of NH_4^+ with different normal concentrations. (b) The standard curve for the NH_4^+ solution with different content detected by the ion chromatography.

Fig. S13. (a) UV-Vis absorption spectra of the electrolytes stained with indophenol indicator after 2 h electrolysis under different conditions: open circuit in N_2 , -0.45 V in N_2 , -0.45 V in Ar, and before electrolysis. (b) Amount of NH₃ generated with LaF₃/CP under different conditions.

Fig. S14. Nyquist plots of LaF₃/CP and La₂O₃/CP.

Fig. S15. The amount of NH_3 and FEs for LaF_3/CP with different catalyst loadings.

Fig. S16. (a) UV-Vis spectra of indophenol assays with NH_3 concentrations (mother solution: 0.1 M Na_2SO_4) after incubated for 1 h at room temperature. (b) Calibration curve used for calculation of NH_3 concentrations. (c) Time-dependent current density curves of LaF_3/CP at various potentials for 2 h in N_2 -saturated 0.1 M Na_2SO_4 . (d) UV-Vis absorption spectra of the electrolytes stained with indophenol indicator after NRR electrolysis at a series of potentials for 2 h. (e) NH_3 yield rates and FEs of LaF_3/CP for NRR at different potentials. (f) Amount of NH_3 generated with LaF_3/CP and CP at -0.84 V.

Fig. S17. (a) UV-Vis absorption spectra of the electrolyte stained with indophenol indicator after electrolysis at -0.45 V for 2 h over initial LaF₃/CP and LaF₃/CP subjected to 24 h. (b) Amount of NH₃ generated after 2 h electrolysis over initial LaF₃/CP and LaF₃/CP subjected to 24 h.

Fig. S18. AFM image and cross-section analysis of LaF₃ nanoplate after stability test.

Fig. S19. TEM image of LaF_3 nanoplate after stability test.

Fig. S20. XRD patterns of LaF₃/CP after stability test.

Fig. S21. XPS spectra of LaF_3 in the (a) La 3d and (d) F 1s regions before and after stability test.

Fig. S22. UV–Vis spectra of the electrolyte estimated by the method of Watt and Chrisp (incubated for 20 min) after 2 h electrolysis at a series of potentials under ambient conditions.

Fig. S23. Free energy diagram for the NRR at zero and applied potential (limiting potential) on La_2O_3 (111) surface through (a) distal and (b) enzymatic mechanisms, on La_2O_3 (300) surface through (c) distal and (d) enzymatic mechanisms and on La_2O_3 (1-10) surface through (e) distal and (f) enzymatic mechanisms.

Fig. S24. Free energy diagram for the NRR at zero and applied potential (limiting potential) on LaF_3 (110) surface through (a) distal and (b) enzymatic mechanisms, LaF_3 (001) surface through (c) distal and (d) enzymatic mechanisms, LaF_3 (100) surface through (e) enzymatic mechanisms, La_2O_3 (110) surface through (f) distal and (g) enzymatic mechanisms, La_2O_3 (100) surface through (h) distal and (i) enzymatic mechanisms, and on La_2O_3 (001) surface through (j) distal mechanisms.

Table S1. Comparison of the catalytic performances of LaF_3/CP with other non-noble-metalNRR catalysts at ambient conditions.

Catalyst	Electrolyte	NH ₃ yield	FE (%)	Ref.
LaF ₃ /CP	0.5 M LiClO ₄	55.9 μ g h ⁻¹ mg ⁻¹ _{cat.} 9.1×10 ⁻¹¹ mol s ⁻¹ cm ⁻² 5.59 μ g h ⁻¹ cm ⁻²	16.0	This work
β-FeOOH	0.5 M LiClO ₄	23.32 $\mu g h^{-1} m g^{-1}{}_{cat.}$	6.7	7
MXene/SSM	0.5 M Li ₂ SO ₄	$4.72 \ \mu g \ h^{-1} \ cm^{-2}$	4.62	8
PEBCD/C	0.5 M Li ₂ SO ₄	$1.58 \ \mu g \ h^{-1} \ cm^{-2}$	2.85	9
Mn ₃ O ₄	0.1 M Na ₂ SO ₄	$11.6 \ \mu g \ h^{-1} \ m g^{-1}{}_{cat.}$	3.0	10
VO ₂ hollow microsphere	0.1 M Na ₂ SO ₄	14.85 $\mu g h^{-1} m g^{-1}{}_{cat.}$	3.97	11
TiO ₂	0.1 M Na ₂ SO ₄	$9.16 \times 10^{-11} \text{ mol s}^{-1} \cdot \text{cm}^{-2}$	2.5	12
SnO_2	0.1 M Na ₂ SO ₄	$1.47 \times 10^{-10} \text{ mol s}^{-1} \text{ cm}^{-2}$	2.17	13
Fe ₃ O ₄ /Ti	0.1 M Na ₂ SO ₄	$5.6 \times 10^{-11} \text{ mol s}^{-1} \text{ cm}^{-2}$	2.6	14
hollow Cr ₂ O ₃	0.1 M Na ₂ SO ₄	25.3 $\mu g h^{-1} m g^{-1}{}_{cat.}$	6.78	15
MoS ₂ /CC	0.1 M Na ₂ SO ₄	$8.08 \times 10^{-11} \text{ mol s}^{-1} \text{ cm}^{-2}$	1.17	16
S-doped carbon nanosphere	0.1 M Na ₂ SO ₄	19.07 $\mu g h^{-1} m g^{-1}{}_{cat.}$	7.47	17
defect-rich fluorographene	0.1 M Na ₂ SO ₄	9.3 $\mu g h^{-1} m g^{-1}{}_{cat.}$	4.2	18
CoO quantum dots	0.1 M Na ₂ SO ₄	21.5 $\mu g h^{-1} m g^{-1}_{cat.}$	8.3	19
Fe ₂ O ₃ -CNT	KHCO ₃	$3.58 \times 10^{-12} \text{ mol s}^{-1} \text{ cm}^{-2}$	0.15	20
N-doped porous carbon	0.05 M H ₂ SO ₄	23.8 $\mu g h^{-1} m g^{-1}{}_{cat.}$	1.42	21
(110)-oriented Mo nanofilm	0.01 M H ₂ SO ₄	$3.09 \times 10^{-11} \text{ mol s}^{-1} \text{ cm}^{-2}$	0.72	22
$Bi_4V_2O_{11}/CeO_2$	0.1 M HCl	23.21 $\mu g h^{-1} m g^{-1}{}_{cat.}$	10.16	23
Nb ₂ O ₅ nanofiber	0.1 M HCl	43.6 $\mu g h^{-1} m g^{-1}{}_{cat.}$	9.26	24
B_4C	0.1 M HCl	$26.57 \ \mu g \ h^{-1} \ m g^{-1}{}_{cat.}$	15.95	25

Fe_3S_4	0.1 M HCl	75.4 $\mu g h^{-1} m g^{-1}{}_{cat.}$	6.45	26
C_3N_4	0.1 M HCl	$8.09 \ \mu g \ h^{-1} \ mg^{-1}_{cat.}$	11.59	27
Mo ₂ C nanorod	0.1 M HCl	95.1 $\mu g h^{-1} m g^{-1}{}_{cat.}$	8.13	28
N-doped porous carbon	0.1 M HCl	$15.7 \ \mu g \ h^{-1} \ m g_{cat.}^{-1}$	1.45	29
sulfur-doped graphene	0.1 M HCl	27.3 μ g h ⁻¹ cm ⁻²	11.5	30
NP-C-MOF-5	0.1 M HCl	$1.08 \ \mu g \ h^{-1} \ m g^{-1}{}_{cat.}$	-	31
γ-Fe ₂ O ₃	0.1 M KOH	$0.212 \ \mu g \ h^{-1} \ m g^{-1}{}_{cat.}$	1.9	32
CoP hollow nanocage	1.0 M KOH	$10.78 \ \mu g \ h^{-1} \ m g^{-1}{}_{cat.}$	7.36	33
Fe/Fe ₃ O ₄	0.1 M PBS	$3.10 \times 10^{-12} \text{ mol s}^{-1} \text{ cm}^{-2}$	8.29	34

References

- 1 D. Zhu, L. Zhang, R. E. Ruther and R. J. Hamers, Nat. Mater., 2013, 12, 836–841.
- 2 G. W. Watt and J. D. Chrisp, Anal. Chem., 1952, 24, 2006–2008.
- 3 B. J. Delley, J. Chem. Phys., 1990, 92, 508-517.
- 4 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865–3868.
- 5 B. Delley, J. Chem. Phys., 2000, 113, 7756–7764.
- 6 N. Govind, M. Petersen, G. Fitzgerald, D. King-Smith and J. Andzelm, *Comput. Mater. Sci.*, 2003, **28**, 250–258.
- 7 X. Zhu, Z. Liu, Q. Liu, Y. Luo, X. Shi, A. M. Asiri, Y. Wu and X. Sun, *Chem. Commun.*, 2018, **54**, 11332–11335.
- 8 Y. Luo, G. Chen, L. Ding, X. Chen, L. Ding and H. Wang, *Joule*, 2019, **3**, 1–11.
- 9 G.-F. Chen, X. Cao, S. Wu, X. Zeng, L. Ding, M. Zhu and H. Wang, J. Am. Chem. Soc., 2017, 139, 9771–9774.
- 10 X. Wu, L. Xia, Y. Wang, W. Lu, Q. Liu, X. Shi and X. Sun, Small, 2018, 14, 1803111.
- R. Zhang, H. Guo, L. Yang, Y. Wang, Z. Niu, H. Huang, H. Chen, L. Xia, T. Li, X. Shi, X. Sun, B. Li and Q. Liu, *ChemElectroChem*, 2019, 6, 1014–1018.
- 12 R. Zhang, X. Ren, X. Shi, F. Xie, B. Zheng, X. Guo and X. Sun, ACS Appl. Mater. Interfaces, 2018, 10, 28251–28255.
- L. Zhang, X. Ren, Y. Luo, X. Shi, A. M. Asiri, T. Li and X. Sun, *Chem. Commun.*, 2018, 54, 12966–12969.
- 14 Q. Liu, X. Zhang, B. Zhang, Y. Luo, G. Cui, F. Xie and X. Sun, *Nanoscale*, 2018, 10, 14386–14389.
- 15 Y. Zhang, W. Qiu, Y. Ma, Y. Luo, Z. Tian, G. Cui, F. Xie, L. Chen, T. Li and X. Sun, ACS Catal., 2018, 8, 8540–8544.
- 16 L. Zhang, X. Ji, X. Ren, Y. Ma, X. Shi, Z. Tian, A. M. Asiri, L. Chen, B. Tang and X. Sun, *Adv. Mater.*, 2018, **30**, 1800191.
- 17 L. Xia, X. Wu, Y. Wang, Z. Niu, Q. Liu, T. Li, X. Shi, A. M. Asiri and X. Sun, *Small Methods*, 2018, 14, 1800251.
- 18 J. Zhao, J. Yang, L. Ji, H. Wang, H. Chen, Z. Niu, Q. Liu, T. Li, G. Cui and X. Sun, *Chem. Commun.*, 2019, 55, 4266–4269.
- 19 K. Chu, Y. Liu, Y. Li, H. Zhang and Y. Tian, J. Mater. Chem. A, 2019, 7, 4389–4394.
- 20 S. Chen, S. Perathoner, C. Ampelli, C. Mebrahtu, D. Su and G. Centi, *Angew. Chem.*, *Int. Ed.*, 2017, 56, 2699–2703.
- 21 Y. Liu, Y. Su, X. Quan, X. Fan, S. Chen, H. Yu, H. Zhao, Y. Zhang and J. Zhao, ACS

Catal., 2018, 8, 1186–1191.

- 22 D. Yang, T. Chen and Z. Wang, J. Mater. Chem. A, 2017, 5, 18967–18971.
- 23 C. Lv, C. Yan, G. Chen, Y. Ding, J. Sun, Y. Zhou and G. Yu, *Angew. Chem.*, *Int. Ed.*, 2018, 57, 6073–6076.
- 24 J. Han, Z. Liu, Y. Ma, G. Cui, F. Xie, F. Wang, Y. Wu, S. Gao, Y. Xu and X. Sun, *Nano Energy*, 2018, **52**, 264–270.
- 25 W. Qiu, X. Xie, J. Qiu, W. Fang, R. Liang, X. Ren, X. Ji, G. Cui, A. M. Asiri, G. Cui, B. Tang and X. Sun, *Nat. Commun.*, 2018, 9, 3485.
- 26 X. Zhao, X. Lan, D. Yu, H. Fu, Z. Liu and T. Mu, Chem. Commun., 2018, 54, 13010– 13013.
- 27 C. Lv, Y. Qian, C. Yan, Y. Ding, Y. Liu, G. Chen and G. Yu, *Angew. Chem.*, *Int. Ed.*, 2018, 57, 10246–10250.
- 28 X. Ren, J. Zhao, Q. Wei, Y. Ma, H. Guo, Q. Liu, Y. Wang, G. Cui, A. M. Asiri, B. Li, B. Tang and X. Sun, ACS Central Sci., 2019, 5, 116–121.
- 29 X. Yang, K. Li, D. Cheng, W. Pang, J. Lv, X. Chen, H. Zang, X. Wu, H. Tan, Y. Wang and Y. Li, *J. Mater. Chem. A*, 2018, 6, 7762–7769.
- 30 L. Xia, J. Yang, H. Wang, R. Zhao, H. Chen, W. Fang, A. M. Asiri, F. Xie, G. Cui and X. Sun, *Chem. Commun.*, 2019, 55, 3371–3374.
- 31 P. Song, L. Kang, H. Wang, R. Guo and R. M. Wang, ACS Appl. Mater. Interfaces, 2019, 11, 12408–12414.
- 32 J. Kong, A. Lim, C. Yoon, J. H. Jang, H. C. Ham, J. Han, S. Nam, D. Kim, Y.-E. Sung, J. Choi and H. S. Park, ACS Sustainable Chem. Eng., 2017, 5, 10986–10995.
- 33 W. Guo, Z. Liang, J. Zhao, B. Zhu, K. Cai, R. Zou and Q. Xu, Small Methods, 2018, 2, 1800204.
- 34 L. Hu, A. Khaniya, J. Wang, G. Chen, W. E. Kaden and X. Feng, ACS Catal., 2018, 8, 9312–9319.