Supporting Information

A polyoxometalate-based polymer electrolyte with improved electrode interphase and ion conductivity for high-safety allsolid-state batteries

Xiangfei Yuan,^a Cui Sun,^a Jia-Ning Duan,^a Jingmin Fan,^a Ruming Yuan,^a Jiajia Chen,^a Jeng-Kuei Chang,^b Mingsen Zheng^{*a} and Quanfeng Dong^{*a}

^a State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (*i*ChEM), Xiamen University, Xiamen, Fujian 361005, China

^b Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan.

*Correspondence: qfdong@xmu.edu.cn, mszheng@xmu.edu.cn

Figure S1. TGA plot of LVC from room temperature to 800 °C.

Figure S2. (a) SEM and (b) TEM images of LVC particles.

Figure S3. (a) The XRD patterns of as-prepared LVC (red), dehydrated LVC (blue) and simulated (black); (b) FTIR spectroscopy of LVC before (black) and after (red) heating at 200 °C under N_2 for 6 hours.

Figure S4. The tensile property of PPEs. Stress-strain curves of PPE-15 wt% (black) and PEO₁₈LiTFSI (red).

Table S1. The tensile stress, tensile strain and Young's modulus of PPEs.

Solid electrolytes	Tensile stress (MPa)	Tensile strain (%)	Young's modulus (MPa)
PPE-15wt%	0.96	974.93	4.57
PEO ₁₈ LiTFSI	0.41	1506.30	1.50

Figure S5. Equivalent circuit for the PPE membranes.

Figure S6. (a) Nyquist plots of PEO₁₈LiTFSI-15 wt%-LLZTO comprised of the same proportion among PEO, LiTFSI and LLZTO (d=2 μ m) as PPE-15 wt% at temperatures from 25 °C to 70 °C; (b) Arrhenius plots for the ionic conductivity of composite polymer solid electrolyte with different LVC and LLZTO loading amounts.

Figure S7. DSC characterization of PPEs with different LVC contents.

Sample	T _g (°C)	Т _т (°С)	$\Delta H_{c} (J \cdot g^{-1})$	χ _c (%)
PEO ₁₈ LiTFSI	-32.7	58.9	72.62	33.98
PPE-5 wt%	-33.6	59.1	67.82	31.74
PPE-10 wt%	-34.1	59. 5	64.24	30.06
PPE-15 wt%	-34.5	58.4	60.97	28.53
PPE-20 wt%	-34.9	55.7	51.26	23.99

Table S2. Comparison of the $T_g, T_m, \Delta H_c$ and χ_c of PPEs with different LVC contents.

Figure S8. Chronoamperometry-time curves during the polarization of (a) Li| PPE-15 wt% |Li; (b) Li| PPE-0 wt% |Li cell at 40 °C, followed an applied potential of 5 mV; Insert: corresponding nyquist spectra before and after polarization.

Figure S9. Chronoamperometry-time curves during the polarization of Li| PEO₁₈LiTFSI-15 wt%-LLZTO |Li cell at 40 °C, followed an applied potential of 5 mV; Insert: corresponding nyquist spectra before and after polarization.

Figure S10. Voltage profile during the lithium plating/striping cycling in Li-Li symmetrical cell with routine $PEO_{18}LiTFSI$ electrolytes with a current density of 0.10 mA cm⁻² at 40 °C.

Table S3. Comparison of our work with related studies about the lithium plating/striping measurement inLi-Li symmetrical cell.

Solid electrolytes	Current density and temperature for Li deposition/stripping	Overpotential for Li deposition/stripping (mV)	Cycling hours for Li deposition/stripping (h)	Ref
PPE-15wt%	0.10 mA cm ⁻² at 40 °C	18	>1300	This work
АРСЕ-300 К	0.10 mA cm ⁻² at 60 °C	~30	> 80	Nano Lett., 2018, 18 , 3829-3838.
LPD@PVDF SIPE	0.50 mA cm ⁻² at 25 °C	33	>1050	Small, 2018, 14 , 1801420
PEO-LLZTO-PEG-60 wt% LiTFSI composite electrolyte	0.50 mA cm ⁻² at 55 °C	~40	>680	Nano Energy, 2018, 46 , 176-184.
P@CMOF	0.10 mA cm ⁻² at 60 °C	70	400	Energy Storage Mater, 2019, 18 , 59-67.
PEO-50 wt % LATP composite solid electrolyte	0.1 mA cm ⁻² at 60 °C	30	200	J. Phys. Chem. C 2018, 122 , 9852–9858
$Li_{6.1}Ga_{0.3}La_3Zr_2O_{12}$ and NASICON-type Li_2O - $Al_2O_3-P_2O_5$ -Ti O_2 -Ge O_2 (LATP) pellets	0.10 mA cm ⁻² at room temperature	< 50	>220	Energy Environ. Sci, 2018, 11 , 1803-1810.

Figure S11. The impedance spectra of Li|PPE-15 wt%|Li cell bias voltage 0.18 V for different time at 40 °C.

Figure S12. The typical cycling performance of LiFePO₄ | $PEO_{18}LiTFSI$ |Li cells. (a) Voltage profile and (b) cycling performance at 0.1 C at 40 °C.

Figure S13. (a) A corresponding enlargement of ARC exotherm with LiFePO₄ | PPE-15 wt% |C cell; (b) The scatter diagram of corresponding temperature rate variation.

Figure S14. (a) ARC exotherm of LiFePO₄ | PPE-15 wt% |Li cell ranging from 50 °C to 360 °C.; (b) The scatter diagram of corresponding temperature rate variation.

Table S4. Comparison of ARC data between LiFePO₄ | PPE-15wt% | C and LiFePO₄ | PPE-15wt% | Li cells during the self-heating process.

Batteries based-on PPE	Onset	Onset	Max Rate	Max
	Temperature	Temperature	Temperature(Temperature
	(°C)	Rate(°C min ⁻¹)	°C)	Rate(°C min ⁻¹)
LiFePO ₄ PPE- 15wt% C	181.4	0.039	351.0	0.398
LiFePO ₄ PPE- 15wt% Li	170.04	0.09	350.2	0.398