SUPPORTING INFORMATION

Porous $NiTiO_3/TiO_2$ nanostructures for photocatatalytic hydrogen evolution

Congcong Xing,^{ab} Yongpeng Liu,^c Yu Zhang,^a Junfeng Liu,^a Ting Zhang,^d Pengyi Tang,^d Jordi Arbiol,^{de} Lluís Soler,^b Kevin Sivula,^c Néstor Guijarro,^c Xiang Wang,^a Junshan Li,^a Ruifeng Du,^a Yong Zuo,^a Andreu Cabot,*^{ae} Jordi Llorca *^b

a. Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, 08930 Barcelona, Spain

- b. Institute of Energy Technologies, Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, 08019 Barcelona, Spain
- c. Laboratory for Molecular Engineering of Optoelectronic Nanomaterials (LIMNO), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015 Lausanne, Switzerland

d. Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain

e. ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain

* E-mails: A. Cabot: acabot@irec.cat J. Llorca: jordi.llorca@upc.edu

Content

1.	Photoreactor				
2.	Additional SEM characterization of the precursor materials 4				
3.	Additional TEM characterization				
4.	Elemental composition				
5.	Scheme of the preparation procedure7				
6.	EELS elemental maps and HRTEM of TiO ₂				
7.	XRD Rietveld refinement				
8.	HRTEM characterization of NiTiO ₃ /TiO ₂ (1%)10				
9.	XPS analyses 11				
10.	TiO ₂ :Ni annealed in argon12				
11.	Nitrogen adsorption-desorption isotherms				
12.	NiTiO ₃ reference material14				
13.	Literature comparison				
14.	Photocatalytic H ₂ production rates16				
15.	UV-vis analysis				
References					

1. Photoreactor

Figure S1. a) Photograph of the system used to test the photocatalytic hydrogen generation: 1 displays the Dreschel bottle containing the ethanol-water solution (1:9 molar). 2 displays the actual photoreactor. b) Scheme of the photoreactor.

2. Additional SEM characterization of the precursor materials

Figure S2. SEM images of TiO_2 :Ni (5%) produced in the following conditions: a) without HDA, b) without H_2O , c) in HDA- H_2O -KCl.

3. Additional TEM characterization

Figure S3. TEM images of (a) TiO₂, (b) TiO₂:Ni (1%), (c) TiO₂:Ni (2%).

4. Elemental composition

Table S1. Ti and Ni atomic concentrations of TiO₂, TiO₂:Ni (1%, 2%, 5%) and NiTiO₃/TiO₂ (1%, 2%, 5%). XRD data refers to the TiO₂ and NiTiO₃ crystallographic phases detected and it does not take into account any peak shift denoting the presence of Ni within the TiO₂ structure.

catalysts	EDX		XRD		XPS	
	Ti (atom%)	Ni (atom%)	Ti (atom%)	Ni (atom%)	Ti (atom%)	Ni (atom%)
TiO ₂	100					
TiO ₂ :Ni (1%)	96.4	3.6			94.3	5.7
TiO ₂ :Ni (2%)	93.6	6.4				
TiO ₂ :Ni (5%)	83.2	16.8				
NiTiO ₃ /TiO ₂ (1%)	96.4	3.6	4.4	95.6	94.2	5.8
NiTiO ₃ /TiO ₂ (2%)	94.3	5.7	6.5	93.5		
NiTiO ₃ /TiO ₂ (5%)	86	14	13.3	86.7		
NiTiO₃	61.9	39.1				

5. Scheme of the preparation procedure

Figure S4. Scheme of the TiO_2 :Ni precursor preparation procedure: (a) TiO_2 :Ni, (b) NiO_x/TiO_2 , (c) $NiTiO_3/TiO_2$.

6. EELS elemental maps and HRTEM of TiO₂

Figure S5. Undoped TiO₂ annealed at 650 °C in air: (a) STEM micrograph and EELS chemical composition maps obtained from the yellow squared area of the STEM micrograph. Individual Ti $L_{2,3}$ -edges at 456 eV (red) and O K-edge at 532 eV (green) as well as its composite. (b) HRTEM micrograph, detail of the yellow squared region and its corresponding power spectrum.

7. XRD Rietveld refinement

Figure S6 Refined fitting of the NiTiO₃/TiO₂(5%) x-ray diffraction data. Blue symbols: experimental data; continuous red line: modified background; continuous green line: calculated modelled structure; continuous light blue line beneath pattern: difference between observed and calculated parameters. Blue tickmarks correspond to reflections of NiTiO₃ (R-3) unit cell, lower red ones to TiO₂ (I41/amd) unit cell. GOF = 1.21. Rw = 6.99%.

8. HRTEM characterization of $NiTiO_3/TiO_2$ (1%)

Figure S7 HRTEM micrographs of $NiTiO_3/TiO_2$ (1%), detail of the yellow squared region and its corresponding power spectrum.

9. XPS analyses

Figure S8. Ni $2p_{3/2}$ region (a), O 1s region (b) and Ti 2p region (c) of the XPS spectra of (1) TiO₂:Ni (1%) (2) NiO_x/TiO₂ (1%) and (3) NiTiO₃/TiO₂ (1%) samples.

Figure S9. Survey XPS spectra of TiO_2 :Ni (1%), NiO_x/TiO₂ (1%) and NiTiO₃/TiO₂ (1%).

10. TiO₂:Ni annealed in argon

Figure S10. TEM image of NiO_x/TiO₂ (5%) annealed in argon.

Figure S11. XRD pattern of TiO_2 and NiO_x/TiO_2 (1%, 2%, 5%) annealed in argon.

11.Nitrogen adsorption-desorption isotherms

Figure S12. Nitrogen adsorption (open symbols) and desorption (filled symbols) isotherms measured of (a) NiO_x -TiO₂(1%) and (b) $NiTiO_3$ -TiO₂(1%) at 77.3 K.

12. NiTiO₃ reference material

Figure S13. SEM images of NiTiO₃

Figure S14. XRD pattern of NiTiO₃

13. Literature comparison

Photocatalyst	H ₂ Evolution Rate μmol h ⁻¹ g ⁻¹	Reaction conditions	AQY %	Ref.
Ni/NiO/N-TiO _{2-x}	185	110W λ>420nm	7.5	S1
0.23%Ni(OH) ₂ on TiO2	900	3W 365nm	12.4	S2
0.25wt% NiO-TiO ₂	261	3W 365nm	1.7	S3
TiO ₂ -Ni(HCO ₃) ₂ -2.5%	377	300W 380nm (±5nm)	6.24	S4
0.32% Ni(NO ₃) ₂ -TiO ₂	163	3W 365nm	8.1	S5
Mesoporous NiO/TiO ₂	240	3W 365nm	1.7	S6
Pt NiO/TiO₂1:1 molar ratio	1,250	400W UV	7.8	S7
Hollow NiTiO ₃ /TiO ₂ (1%)	11,500	365nm	11.6	This work

Table S2. Comparison of the hydrogen evolution rate and the apparent quantum yield with reportedNi-Ti-O systems.

14. Photocatalytic H₂ production rates

Figure S15. Photocatalytic H₂ production rates obtained from TiO₂, NiTiO₃, TiO₂:Ni (1%), NiO_x/TiO₂ (1%), NiTiO₃/TiO₂ (1%, 2%, 5%).

15.UV-vis analysis

Figure S16. Kubelka-Munk function for TiO_2 , $NiTiO_3/TiO_2$ (1, 2, 5%) and NiO_x/TiO_2 including a linear fit (dashed lines) to determine the band gap energy.

References

- S1. S. Hu, F. Li, Z. Fan and J. Gui, J. Power Sources, 2014, 250, 30–39.
- S2. J. Yu, Y. Hai and B. Cheng, J. Phys. Chem. C, 2011, 115, 4953–4958.
- S3. L. Li, B. Cheng, Y. Wang and J. Yu, *J. Colloid Interface Sci.*, 2015, **449**, 115–121.
- S4. Y. Wei, G. Cheng, J. Xiong, F. Xu and R. Chen, ACS Sustain. Chem. Eng., 2017, 5, 5027–5038.
- S5. W. Wang, S. Liu, L. Nie, B. Cheng and J. Yu, Phys. Chem. Chem. Phys., 2013, 15, 12033–12039.
- S6. L. Li, B. Cheng, Y. Wang and J. Yu, J. Colloid. Interf. Sci., 2015, 449, 115-121.
- S7. A. Rawool, M. R. Pai, A. M. Banerjee, A. Arya, R. Ningthoujam, R. Tewari, R. Rao, B. Chalke, P. Ayyub and A. Tripathi, *Appl. Catal. B Environ.*, 2018, **221**, 443-458.