Supporting Information

One Minute from Pristine Carbon to Electrocatalyst for Hydrogen Peroxide Production

Yun-Lu Wang a, Shi-Song Li a, Xiao-Hong Yang b, Guo-Yong Xu c, Zi-Chun Zhu b,

Ping Chen^{a,c,d*}, Shan-Qing Li^{b*}

^a School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui,

230601, P. R. China

^b School of Chemistry and Materials Engineering, Chizhou University, Chizhou, Anhui, 247000, P. R. China

^c Institute of Physical Science and Information Technology, Anhui University, Hefei,
230601, P. R. China

^d Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei, 230601, P. R. China

*Correspondence to: Prof. Ping Chen (E-mail: <u>chenping@ahu.edu.cn</u>) or Dr. Shan-Qing Li (E-mail: <u>shanqingli@czu.edu.cn</u>)

Figure S1 Raman spectra of CMK3 and CMK3-20s.

Figure S2 (a-d) High resolution C1s spectra of CMK3, CMK3-10s, CMK3-20s and CMK3-30s.

Figure S3 (a) High resolution O1s spectrum of CMK3-20s-C; (b) High resolution O1s spectrum of CMK3-N₂

Figure S4 (a-b) Nitrogen adsorption-desorption isotherm curve and pore size distribution of CMK3-10s; (c-d) Nitrogen adsorption-desorption isotherm curve and pore size distribution of CMK3-30s

Figure S5 (a) RRDE voltammograms of CMK3-20s in O₂-saturated 0.5 M H₂SO₄ (at rotating speed of 1,600 rpm, sweep rate of 10 mV s $^{-1}$); (b) The selectivity of the peroxide yield obtained from the RRDE curves for CMK3-20s in 0.5 M H₂SO₄.

Figure S6 I-t curve of CMK3-20s measured at the different applied potentials the flow cell (0.1 M KOH).

Table. S1 Content of carbon and oxygen elements in CMK3, CMK3-10s, CMK3-20s and CMK3-30s, and the ratio of functional groups containing oxygen element.

Sample	C at.%	O at.%	(C=O) %	(C-O) %
СМК3	96.2	2.85	33	67
CMK3-10s	95.8	3.22	28	72
CMK3-20s	96.2	2.97	24	76
CMK3-30s	96.1	2.93	21	79

Sample	BET surface area (m²/g)	Total Pore Volume (cm ³ /g)	average pore diameter (nm)
СМК3	1,009.4	1.32	4.00
CMK3-10s	1,017.4	1.28	4.01
CMK3-20s	1,018.8	1.30	4.05
CMK3-30s	1,054.6	1.34	4.01

Table. S2 The value of BET surface area, pore volume and pore diameter of CMK3, CMK3-10s, CMK3-20s and CMK3-30s.

	рН	Potential	[H ₂ O ₂]	Faradaic	Ref.
Sample		(V vs. Ag/ AgCl)	(mg L ⁻¹ h ⁻¹)	Efficiency (%)	
O-CNTs	14	-0.24	197.5	~95	[1]
o-GOMC-1	13	-0.23	~55	99	[2]
AGF1100	13	-0.7	~385	72.3	[3]
Nitrogen- doped mesoporous carbo n	13	-0.85	~70	70	[4]
Vulcan carbon	13	-0.7	~55	41.0	[5]
CeO ₂ /C	13	-0.7	~100	44	[5]
Biomass derived N/C catalyst	13	-0.67	2.04	40	[6]
Carbon supported MnO ₂	7	-0.7	100	none	[7]
N-O-P-Carbon-800	13	-0.7	320	95	[8]
rGO-PEI aerogel	13	-0.2	~160	90.7	[9]
CMK3-20s	13	-0.55	421	92.5	This work

Table. S3 Comparison of performance of different samples with the prepared CMK3-20s

Supporting References

Z. Lu; G. Chen; S. Siahrostami; Z. Chen; K. Liu; J. Xie; L. Liao; T. Wu; D. Lin;
 Y. Liu; T. F. Jaramillo; J. K. Norskov; Y. Cui, *Nature Catalysis* 2018, *1*, 156-162
 Y. J. Sa; J. H. Kim; S. H. Joo, *Angewandte Chemie-International Edition* 2019, 58, 1100-1105

3. Z. Pan; K. Wang; W. Yi; P. Tsiakaras; S. Song, *Applied Catalysis B* Environmental 2018, 237, S0926337318305113

4. Y. Sun; I. Sinev; W. Ju; A. Bergmann; S. Dresp; S. Kuehl; C. Spoeri; H. Schmies;
H. Wang; D. Bernsmeier; B. Paul; R. Schmack; R. Kraehnert; B. Roldan Cuenya; P. Strasser, *Acs Catalysis* 2018, *8*, 2844-2856

 F. Hasché; M. Oezaslan; P. Strasser; T. P. Fellinger, *Journal of Energy Chemistry* 2016, 25, 251

6. Y. Yang; F. He; Y. Shen; X. Chen; H. Mei; S. Liu; Y. Zhang, *Chemical Communications* 2017, *53*, 9994-9997

 L. R. Aveiro; A. G. M. D. Silva; V. S. Antonin; E. G. Candido; L. S. Parreira; R.
 S. Geonmonond; I. C. D. Freitas; M. R. V. Lanza; P. H. C. Camargo; M. C. Santos, *Electrochimica Acta* 2018, *268*, S0013468618303682

H. X. Zhang; S. C. Yang; Y. L. Wang; J. C. Xi; J. C. Huang; J. F. Li; P. Chen; R. Jia, *Electrochimica Acta* 2019, *308*, 74-82

9. X. Xiao; T. Wang; J. Bai; F. Li; T. Ma; Y. Chen, Acs Applied Materials & Interfaces 2018, 10, 42534-42541