Support Information

Binder-Free Hierarchical VS₂ Electrodes for High-Performance Aqueous

Zn Ion Batteries towards Commercial Level Mass Loading

Tianpeng Jiao,^{a,b,§} Qi Yang,^{b,§} Shuilin Wu,^{a,c} Zifeng Wang^b, Dong Shen,^{a,d} Bin Liu,^{a,b} Junye Cheng,^{a,b} Hongfei Li,^b Longtao Ma,^b Chunyi Zhi,^{b,*} and Wenjun Zhang^{a,b,*}

^aCenter of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China. E-mail: apwjzh@cityu.edu.hk

^bDepartment of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China. E-mail: cy.zhi@cityu.edu.hk

^cDepartment of Mechanical and Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.

^dDepartment of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.

§These authors contributed equally to this work.

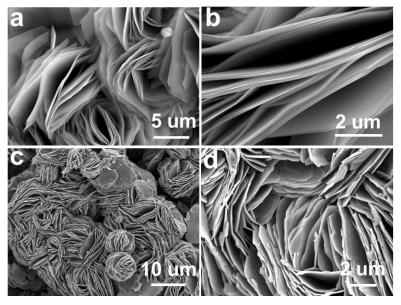


Figure S1. SEM images of (a, b) $VS_2@SS$ electrodes, and (c, d) VS_2 powder.

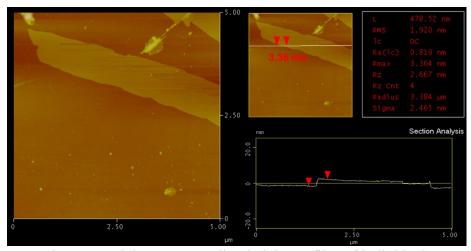


Figure S2. AFM images and the corresponding height profiles of individual VS_2 nanosheets.

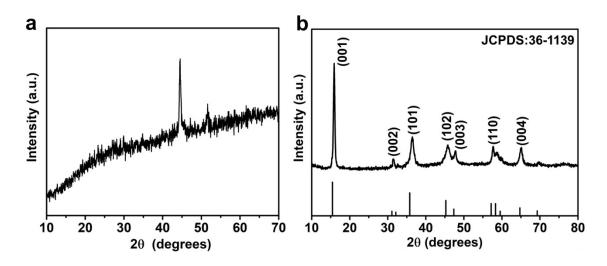


Figure S3. XRD patterns of (a) stainless steel mesh and (b) VS₂ powder.

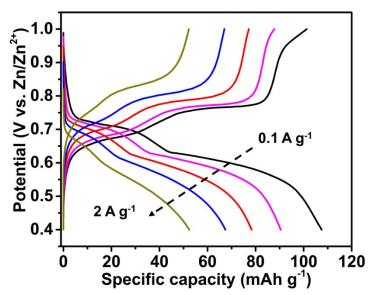


Figure S4. Galvanostatic discharge-charge curves of VS_2 slurry-coated electrode.

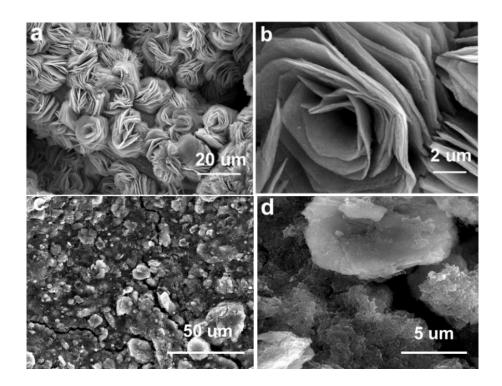
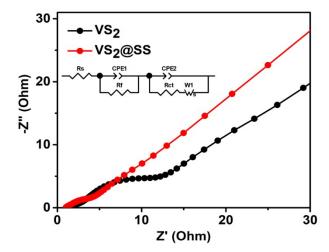



Figure S5. SEM images of (a, b) the VS₂@SS electrode after long-term cycling, and (c, d) the conventional VS₂ slurry-coated electrode after cycling.

	R_s	R_f	R _{ct}
VS ₂ @SS electrode	1.1	0.3	1.9
VS ₂ slurry-coated	1.8	1	6
electrode			

Figure S6. Nyquist plots of $VS_2@SS$ and VS_2 slurry-coated electrodes. Inset is the equivalent circuit. The table is the comparison of two electrodes in the calculated values. This circuit is composed of R_s (the solution resistance), R_{ct} (resistance for charge transfer), CPE (constant-phase element) and W (Warburg diffusion process). The parallel circuit R_f CPE1could be related either to the SEI layer or to the bulk resistance. Similar results have been reported in aqueous Li-ion batteries with Li_2SO_4 and $LiNO_3$ electrolyte or superconcentrated LiTFSI electrolyte¹⁻³.

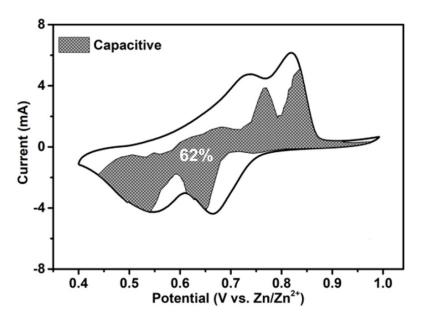


Figure S7. The pseudocapacitive component occupied 62% of total charge storage of $VS_2@SS$ electrode at a scan rate of 0.4 mV s⁻¹.

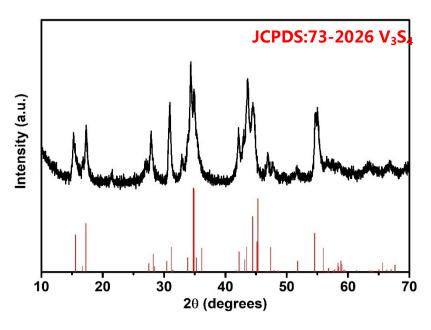
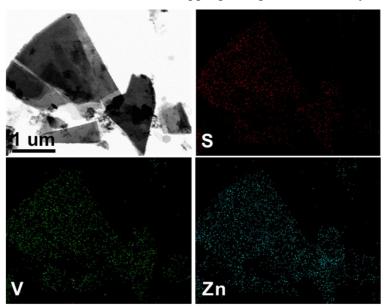



Figure S8. XRD pattern of the fully discharged VS₂@SS electrode.

Figure S9. STEM and the elemental mapping images of the fully discharged VS₂@SS

electrode.

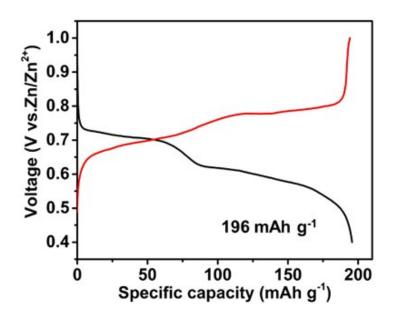


Figure S10. The charge and discharge curves of VS₂@SS electrode at 50 mA g⁻¹.

The intercalation number of Zn^{2+} (x+y) is calculated according to the discharge curve at 50 mA g^{-1} and based on the following equations:

$$x + y = \frac{nC_a M}{C_0}$$

(n is the number of electron exchanged, $C_a = 196$ mAh g^{-1} , M = 115 g mol⁻¹, $C_0 = 26.8$ nm M^{-1}

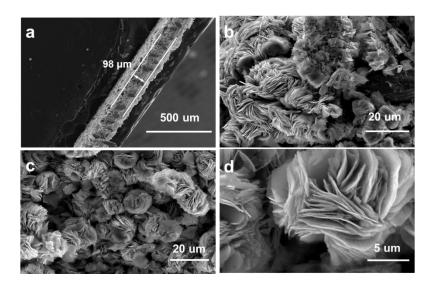


Figure S11. (a) and (b) The cross-section SEM images of $VS_2@SS$ electrode with a mass loading of about 13 mg cm⁻². (c) and (d) SEM images of the electrode after cycling.

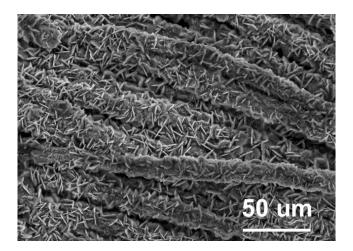


Figure S12. SEM image of the Zn electrodeposited carbon cloth.

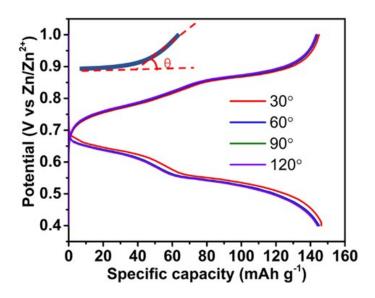


Figure S13. The galvanostatic charge/discharge curves of the flexible solid-state battery under various bending states at 0.5 A g⁻¹. Inset is the definition of the bending angle.

- 1. R. B. Shivashankaraiah, H. Manjunatha, K. C. Mahesh, G. S. Suresh and T. V. Venkatesha, *Journal of the Electrochemical Society*, 2012, **159**, A1074-A1082.
- 2. H. Manjunatha, K. C. Mahesh, G. S. Suresh and T. V. Venkatesha, *Electrochimica Acta*, 2011, 56, 1439-1446.
- 3. L. M. Suo, D. Oh, Y. X. Lin, Z. Q. Zhuo, O. Borodin, T. Gao, F. Wang, A. Kushima, Z. Q. Wang, H. C. Kim, Y. Qi, W. L. Yang, F. Pan, J. Li, K. Xu and C. S. Wang, *Journal of the American Chemical Society*, 2017, 139, 18670-18680.