Electronic Supplementary Information

Water Solvent-assisted Condensation Polymerization Strategy of the Superhydrophobic Lignocellulosic Fiber for Efficient Oil/Water Separation

Lei Kang, Jinpeng Li, Jinsong Zeng, Wenhua Gao, Jun Xu, Zheng Cheng,* Kefu Chen and Bin Wang*

State Key Laboratory of Pulp and Paper Engineering, Plant micro/nano fiber research center, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China. E-mail: febwang@scut.edu.cn; C.Z24@mail.scut.edu.cn

Main materials	Method	Solvent used	Byproduct	Substrate	Ref.
TEOS, OTMS	Ultrasound, irradiation	Ethanol	Ethanol, methanol	Fabric Bag	1
MTES	Freeze-drying, immerse	Ethanol	Ethanol	Cellulose aerogels	2
MTMS, HDTMS	Freeze-drying	Ethanol	Methanol	Cellulose aerogels	3
MBA, urea, MTCS	Freeze-drying, vapor deposition	Water	HCl	Cellulose aerogels	4
OTCS, CICH ₂ COOH, CH ₃ COOH	Freeze-drying, vapor deposition	Ethanol, isopropanol, methanol	HCl	Cellulose aerogels	5
ESO, BDE	Freeze-drying, immerse	n-hexane	-	Cellulose aerogels	6
MDI	Freeze-drying, immerse	Acetone, tert-butanol	-	Cellulose aerogels	7
DA·HCl, ODA	Freeze-drying	Water, tert-butanol	-	Cellulose aerogels	8
DADE, POM	Freeze-drying	NMP, water	-	BC aerogels	9
SiO ₂ , DVB, AIBN	Polymerization	Ethyl acetate	-	-	10
NaOH, NaClO ₂ , HCl, CH ₃ COOH,	Freeze-drying, carbonization	Ethanol	Inorganic matter	Carbon aerogels	11
titanium isopropoxide					
NaOH, NaClO ₂ , HCl, CH ₃ COOH	Freeze-drying, carbonization	Water	Inorganic matter	Carbon aerogels	12
PP, PTFE	Supercritical CO ₂ foaming	-	-	Foam	13
TPU, EP, CNTs, hardener	Freeze-drying	1, 4-dioxane	-	Foam	14
OTCS, APT, HCl	Immerse	Toluene, ethanol, acetone	HCl	PU sponge	15
TEOS, MTMS, TMCS	Irradiation	Ethanol, methanol	Ethanol, methanol, HCl	Polyurethane sponge	16
SA, HCl, thiourea	Immerse	Ethanol	-	Copper mesh	17
CA, NaOH	3D-printed	Ethyl acetate, methanol	-	Cellulose mesh	18
ZnO, DFTMS, PS	Hydrothermal reaction, dip-coating	Ethanol, THF	Methanol	Cotton	19
PEI, 5Acl, ODA	Dip-coating/immerse	Ethanol, THF	-	Cotton	20

Table S1 A summary of various preparation methods of various (super)hydrophobic oil/water separation materials

R, R' = alkyl, aryl, alkoxy, vinyl, etc.

Scheme S1 Method for preparing silane coupling agent

As shown in Table S1, the low surface energy materials mainly were used in the superhydrophobic treatment in the form of foam, sponge, aerogels, and mesh materials for oil/water separation. The above materials are treated with various silane coupling agents which are assisted by organic solvents or inorganic nanoparticles as well. These processes are accompanied by the production of all kinds of by-products (hydrochloric acid, alcohols, and inorganics). Meanwhile, the oil/water separation materials of originated from biomass substrates are normally made into various cellulose aerogels or carbon aerogels. The preparation of micro-nanocellulose is energy-intensive, and the further freeze-drying process is also high energy-consuming. Thus it is difficult to expand on a large scale. In addition, the raw materials used for foam and sponge are difficult to degrade. The chemical reaction formula for the preparation of various silane coupling agents is generally high energy consumption and heavy pollution. Based on the above reasons, it is necessary to develop more effective, environmentally friendly, bulky and cheap chemicals to (super) hydrophobicize the surface of materials.

Abbreviation			
TEOS	Tetraethylorthosilicate		
OTMS	Octadecyltrimethoxysilane		
SA	Stearic acid		
TPU	Thermoplastic polyurethane		
EP	Epoxy resin		
ESO	epoxidized soybean oil		
MTCS	Methyltrichlorosilane		
CNTs	Carbon nanotubes		
PDMS	Poly(dimethylsiloxane) trimethylsiloxyterminated		
DA·HCI	Dopamine hydrochloride		
TMCS	Trimethylchlorosilane		
BDE	1,4-butanediol diglycidyl ether		
ODA	Octadecylamine		
HDTMS	Hexadecyltrimethoxysilane		
MTMS	Methyltrimethoxysilane		
OTCS	Octyltrichlorosilane		
PP	Polypropylene		
PTFE	Polytetrafluoroethylene		
DADE	4,4'-Diaminodiphenyl ether		
DFTMS	Dodecafluoroheptyl-propyl-trimethoxysilane		
PS	Polystyrene		
PVA	Poly(vinyl alcohol)		
POM	Paraformaldehyde		
CA	Cellulose acetate		
PU	Polyurethane		
MDI	methylene diphenyl diisocyanate		
MBA	N, N'-methylenebisacrylamide		
OTCS	Octadecyltrichlorosilane		
APT	Attapulgite		
5Acl	Dipentaerythritol penta-/hexa-acrylate		
BC	Cacterial cellulose		
PEI	branched poly(ethyleneimine)		
DVB	Divinylbenzene		
AIBN	Azodiisobutyronitrile		

UV Irradiation tests

Supplementary Figure S6. UV Irradiation tests. (A-H) The OMF lignocellulosic fiber was exposed to ultra-violet (UV) radiations of both shorter (254 nm) as well as longer (365 nm) wavelengths for 168 hours.

Filtration recycle tests

Supplementary Figure S6. Filtration recycle tests. The contact angle images illustrating theseparation of a complex oil/water mixture that consists of heavy oil (25 mL of DCM) and water (25 mL) for repetitive use in gravity-driven filtration of an oil/water mixture at least 70 times, throughgravity-drivenfiltrationusingOMFlignocellulosicfiber.

Movie S1

Illustrating the separation of floating droplets of motor oil by using OMF lignocellulosic fiber. 0.5 mL of oil was placed on the air/water interface in a Petri dish, then the treated pulp was placed on the water surface and the OMF lignocellulosic fiber selectively absorbed the oil from the oil/water interface within 30 seconds.

Movie S2

Illustrating the separation of floating droplets of motor oil by using original lignocellulosic fiber. 0.5 mL of oil was placed on the air/water interface in a Petri dish. The original lignocellulosic pulp could not absorb any trace of the floating oil droplets, but the original lignocellulosic pulp absorbed water quickly and became wet. The wet lignocellulosic pulp could not absorb any trace of the moving oil droplets on the air/water interface because of repellence effect.

Movie S3

Illustrating the successful collection/separation of heavy model-oil (DCM) under water (red colour aids visual inspection) using the OMF lignocellulosic fiber.

Movie S4

Illustrating the original lignocellulosic fiber was unsuitable for collecting oil under water but was for collecting the aqueous phase (red colour) selectively.Movie S5

Oil/water separation tests. Illustrating the separation of a complex oil/water mixture that consists of heavy oil (25 mL of DCM, colourless) and water (25 mL, red colour) through gravity-driven filtration using OMF lignocellulosic fibers.

Movie S6

Antifouling tests. 1. Illustrating the OMF lignocellulosic fibers were inserted into MnO_2 dyed water, the OMF lignocellulosic fibers did not get dyed due to the antifouling properties. 2. Showing that fast flowing K₂MnO₄ dyed water did not stain the OMF lignocellulosic fibers which were pasted on the "double-sided tape" substrates.

Movie S7

Illustrating the successful collection/separation of heavy model-oil (20 mL of DCM, colorless) under water (20 mL red colour aids visual inspection) using the OMF cotton fabric.

References

- 1. J. Li, L. Yan, X. Tang, H. Feng, D. Hu and F. Zha, *Adv. Mater. Interfaces*, 2016, **3**, 1500770.
- 2. S. Zhou, P. Liu, M. Wang, H. Zhao, J. Yang and F. Xu, ACS Sustainable Chemistry & Engineering, 2016, 4, 6409-6416.
- O. Laitinen, T. Suopajärvi, M. Österberg and H. Liimatainen, ACS Appl. Mater. Interfaces, 2017, 9, 25029-25037.
- 4. Q. Liao, X. Su, W. Zhu, W. Hua, Z. Qian, L. Liu and J. Yao, *RSC Adv.*, 2016, **6**, 63773-63781.
- 5. N. T. Cervin, C. Aulin, P. T. Larsson and L. Wågberg, *Cellulose*, 2012, **19**, 401-410.
- 6. X. Xu, F. Dong, X. Yang, H. Liu, L. Guo, Y. Qian, A. Wang, S. Wang and J. Luo, *J. Agric. Food. Chem.*, 2019, **67**, 637-643.

- 7. F. Jiang and Y.-L. Hsieh, ACS Appl. Mater. Interfaces, 2017, 9, 2825-2834.
- R. Gao, S. Xiao, W. Gan, Q. Liu, H. Amer, T. Rosenau, J. Li and Y. Lu, *ACS Sustainable Chem.* Eng., 2018, 6, 9047-9055.
- 9. Z. Li, J. Qiu, Y. Shi and C. Pei, *Cellulose*, 2018, 25, 2987-2996.
- 10. Y. Li, Z. Zhang, B. Ge, X. Men and Q. Xue, Green Chem., 2016, 18, 5266-5272.
- D. Yuan, T. Zhang, Q. Guo, F. Qiu, D. Yang and Z. Ou, *Industrial & Engineering Chemistry Research*, 2018, 57, 14758-14766.
- 12. Y. Liu, Y. Peng, T. Zhang, F. Qiu and D. Yuan, Cellulose, 2018, 25, 3067-3078.
- H.-Y. Mi, X. Jing, Y. Liu, L. Li, H. Li, X.-F. Peng and H. Zhou, ACS Appl. Mater. Interfaces, 2019, 11, 7479-7487.
- X. Cao, Y. Zhou, X. Wei, W. Zhai, G. Zheng, K. Dai, C. Liu and C. Shen, *Polym. Test.*, 2018, 72, 86-93.
- 15. J. Li, C. Xu, Y. Zhang, R. Wang, F. Zha and H. She, J. Mater. Chem. A, 2016, 4, 15546-15553.
- 16. M. Li, H. Jiang and D. Xu, *Mater. Res. Express*, 2018, **5**, 045003.
- 17. M. Khosravi, S. Azizian and R. Boukherroub, Sep. Purif. Technol., 2019, 215, 573-581.
- J. J. Koh, G. J. H. Lim, X. Zhou, X. Zhang, J. Ding and C. He, *ACS Appl. Mater. Interfaces*, 2019, 11, 13787-13795.
- Y. Qing, Y. Zheng, C. Hu, Y. Wang, Y. He, Y. Gong and Q. Mo, *Applied Surface Science*, 2013, 285, 583-587.
- 20. A. M. Rather, N. Jana, P. Hazarika and U. Manna, *Journal of Materials Chemistry A*, 2017, **5**, 23339-23348.
- 21. J. Li and D. Li, *Guangdong Chemical Industry*, 2016.
- 22. Y. S. Cho, S. Kang, J. S. Han, B. R. Yoo and I. N. Jung, *Journal of the American Chemical Society*, 2001, **123**, 5584-5585.
- 23. C. A. Schlecht, D. M. Johnson and J. A. Maurer, *RSC Advances*, 2013, **3**.
- 24. I. Buslov, F. Song and X. Hu, Angew Chem Int Ed Engl, 2016, 55, 12295-12299.
- F. Deng, X. U. Shaohua, Y. Wen, L. I. Weifan and F. Li, *Chemical Industry & Engineering* Progress, 2008, 27, 112-115.
- 26. C. Rücker and K. Kümmerer, Chem. Rev., 2015, 115, 466-524.
- J. Kurjata, K. Rozgawijas and W. A. Stanczyk, *European Journal of Chemistry*, 2013, 4, 343-349.
- 28. Y. Fujimoto, A. Shimojima and K. Kuroda, Chem. Mater., 2003, 15, 4768-4774.