Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information (ESI) for

Origins of boron catalysis in peroxymonosulfate activation and advanced oxidation

Xiaoguang Duan^{a,*}, Wenlang, Li^b, Jian Kang^c, Wenjie Tian^a, Huayang Zhang^a, Shih-Hsin Ho^d, Zhimin Ao^b, Hongqi Sun^e, Shaobin Wang^{a,c*}

^a School of Chemical Engineering and Advanced Materials, The University of Adelaide,

Adelaide, SA 5005, Australia

^b School of Environmental Science and Engineering, Institute of Environmental Health and

Pollution Control, Guangdong University of Technology, Guangzhou 510006, China

^c Department of Chemical Engineering, Curtin University, Perth, WA 6845, Australia

d State Key Laboratory of Urban Water Resource and Environment, School of

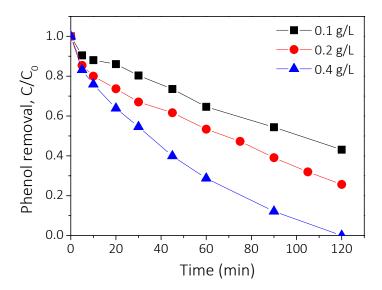
Environment, Harbin Institute of Technology, Harbin, China

^e School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia

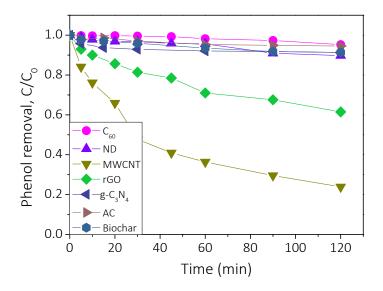
*Corresponding Authors:

xiaoguang.duan@adelaide.edu.au (X.D.)

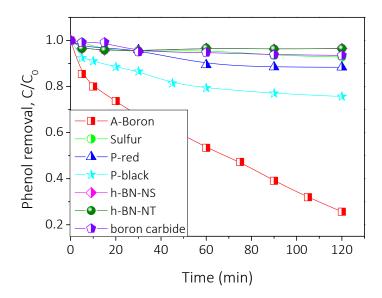
shaobin.wang@adelaide.edu.au (S.W.)

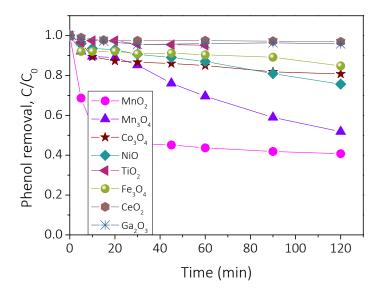

Text S1 Detailed synthesis procedure of the transition metal oxides.

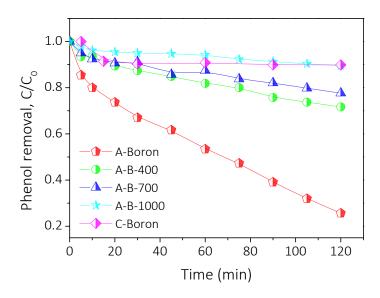
Manganese dioxide (MnO₂) was prepared by a hydrothermal method.¹ Manganese sulfate monohydrate (0.008 mol MnSO₄•H₂O) and an equal mole of ammonium persulfate ((NH₄)₂S₂O₃) were dissolved in ultrapure distilled water and stirred to form a homogeneous solution. Then the mixture was transferred into an 80 mL Teflon-lined stainless-steel autoclave and treated at 140 °C for 12 h. The product was filtered, washed with distilled water and finally dried in an oven at 60 °C overnight.

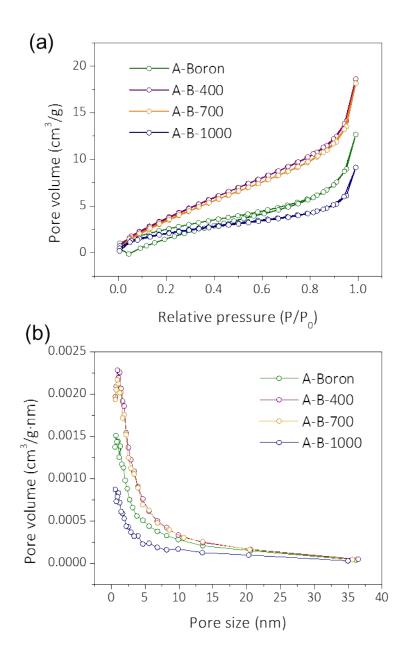

Manganese(II, III) oxide (Mn₃O₄) was synthesized by calcination of the obtained MnO₂ at 950 °C in air for 2 h to get Mn₃O₄.²

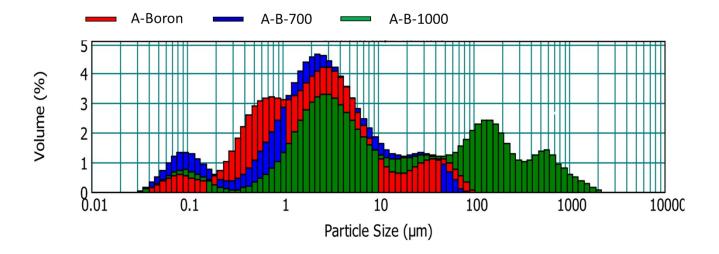
Cobalt oxide (Co₃O₄) was synthesized by a hydrothermal method.³ Specifically, cobalt acetate tetrahydrate Co(C₂H₃O₂)₂•4H₂O, 0.93 g) was dissolved in 70 mL H₂O, and then 10 mL of ammonium solution (NH₃•H₂O, 28%) was dropwise introduced into the solution. The mixture was transferred to a 120 mL Teflon-lined stainless-steel autoclave and treated at 180 °C for 12 h. The product was filtered, washed with distilled water and finally dried in an oven at 60 °C overnight.

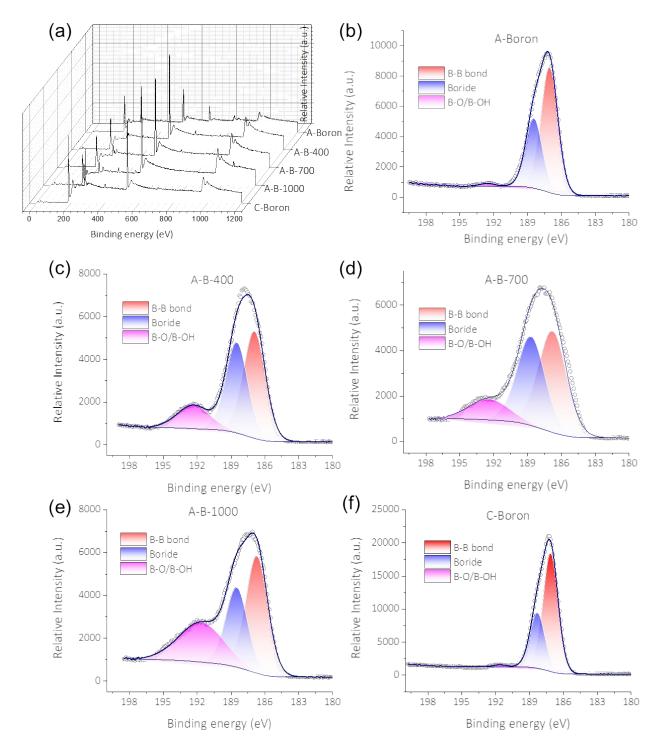

Synthesis of Fe₃O₄ was synthesised by a hydrothermal method.⁴ FeCl₃•6H₂O (0.02 mol) and FeCl₂•4H₂O (0.01 mol) were dissolved in 80 mL of ultrapure water, followed by 1 h stirring. With stirring, 28% ammonia solution was added dropwisely at a rate of 0.5 mL/min with nitrogen bubbling (40 mL/min) to keep solution at pH = 10. The mixed solution was then transferred into a Teflon-lined autoclave (120 mL) and treated at 180 °C in an oven for 18 h. The product was filtered, washed with distilled water and finally dried in an oven at 60 °C overnight.

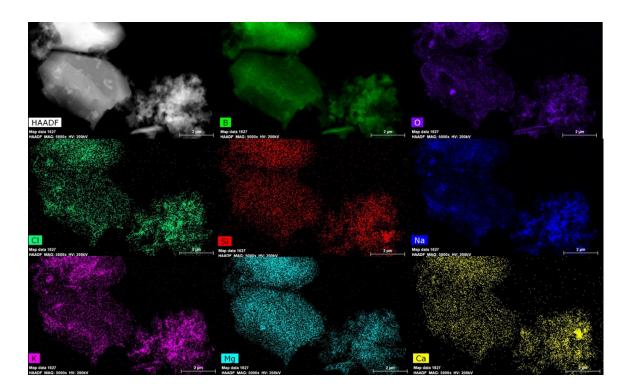

Figure S1. The effect of catalyst loading on catalytic phenol oxidation. (Experimental conditions: phenol = 0.1 mM, PMS = 3.3 mM, temperature = $25 \,^{\circ}\text{C.}$)


Figure S2. Catalytic performance of different carbocatalysts for PMS activation and phenol oxidation. (Experimental conditions: phenol = 0.1 mM, catalyst= 0.2 g/L, PMS = 3.3 mM, temperature = $25 \, ^{\circ}\text{C.}$)


Figure S3. Catalytic performances of different metal-free non-carbon materials for PMS activation and phenol oxidation. (Experimental conditions: phenol = 0.1 mM, catalyst= 0.2 g/L, PMS = 3.3 mM, temperature = 25 °C.)


Figure S4. Catalytic performances of different transition metal oxides for PMS activation and phenol oxidation. (Experimental conditions: phenol = 0.1 mM, catalyst= 0.2 g/L, PMS = 3.3 mM, temperature = $25 \, ^{\circ}\text{C.}$)


Figure S5. Catalytic performances of different boron materials for PMS activation and phenol oxidation. (Experimental conditions: phenol = 0.1 mM, catalyst= 0.2 g/L, PMS = 3.3 mM, temperature = $25 \, ^{\circ}\text{C.}$)


Figure S6. (a) Nitrogen adsorption isotherms and (b) pore size distribution of the boron samples.

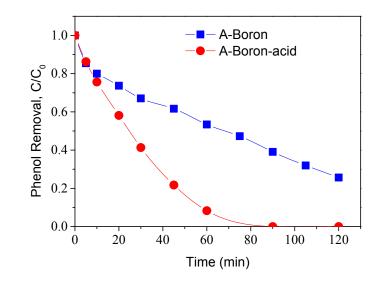

Figure S7. Particle size distribution analysis of different boron samples.

Figure S8. (a) XPS surveys of the boron samples. High-resolution XPS spectra of B 1s peak and fitting compounds of (b) A-Boron, (c) A-B-400, (d) A-B-700, (e) A-B-1000, and (f) C-Boron.

Figure S9. High-angle annular dark-field (HAADF) and EDX elemental mapping of A-Boron.

Figure S10. Comparison of the reactivities before (A-Boron) and after acid washing (A-Boron-acid, 1 wt.% HCl washing for 6 h). (Experimental conditions: phenol = 0.1 mM, catalyst= 0.2 g/L, PMS = 3.3 mM, temperature = 25 °C)

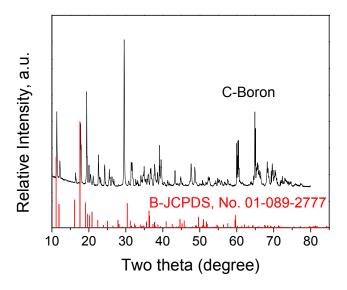
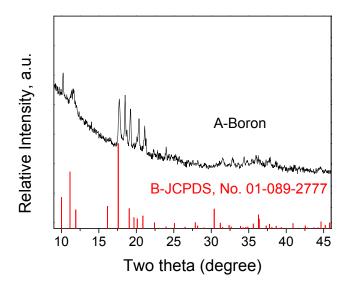
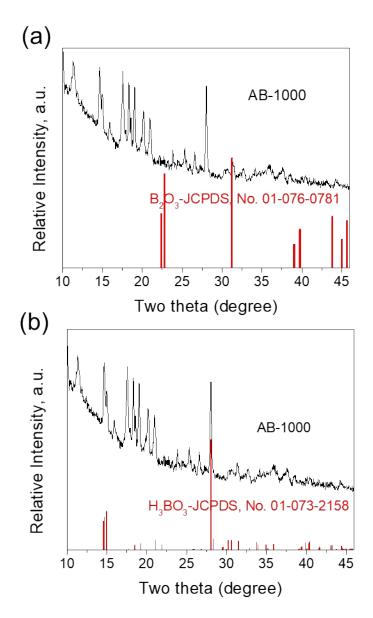
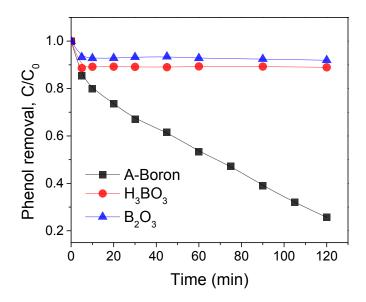


Figure S11. Comparison of XRD spectrum of C-Boron with Boron JCPDS card.

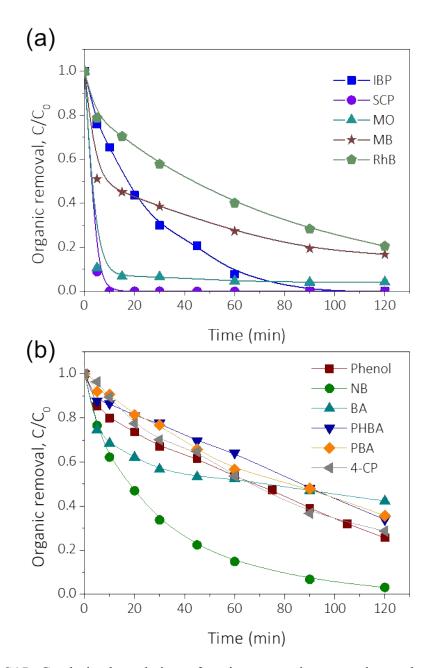

Figure S12. Comparison of XRD spectrum of A-Boron with Boron JCPDS card.

Figure S13. Comparison of XRD spectrum of A-B-1000 with JCPDS cards of (a) B_2O_3 and (b) H_3BO_3 .

Figure S14. Reactivity comparison of A-Boron with B_2O_3 and H_3BO_3 . (Experimental conditions: phenol = 0.1 mM, catalyst= 0.2 g/L, PMS = 3.3 mM, temperature = 25 °C)

Figure S15. Catalytic degradation of various organic contaminants by A-Boron/PMS system. (Experimental conditions: organics = 0.1 mM, catalyst= 0.2 g/L, PMS = 3.3 mM, temperature = 25 °C)

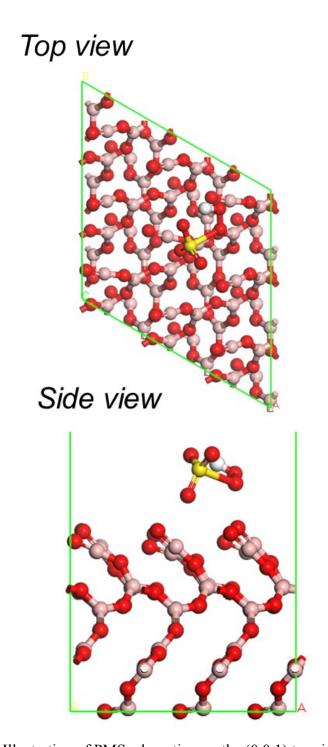
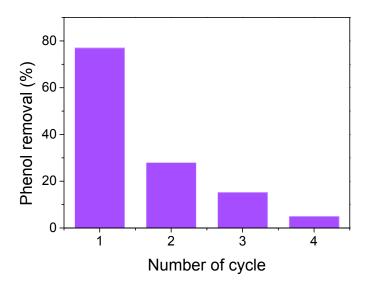



Figure S16. Illustration of PMS adsorption on the $(0\ 0\ 1)$ termination of B_2O_3 .

Figure S17. Stability of A-Boron for PMS activation and catalytic phenol oxidation for 180 min in multiple runs. (Experimental conditions: phenol = 0.2 mM, catalyst= 0.2 g/L, PMS = 3.3 mM, temperature = 25 °C)

Top view

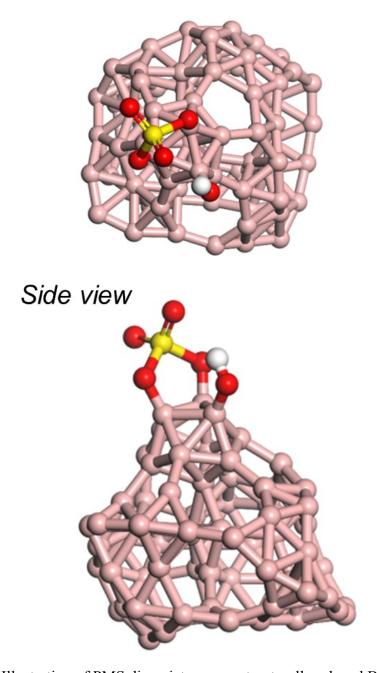


Figure S18. Illustration of PMS dissociate over a structurally relaxed B75 cluster.

Table S1. Summary of electron transfer from boron to activated PMS and the associated adsorption energies.

Boron Terminations	Charge transfer	Charge transfer	Total charge	Adsorption
or Structure	to OH (e)	to SO ₄ (e)	transfer (e)	energy (eV)
(1 0 0)	0.180	0.644	0.824	-7.58
(1 0 1)	0.194	0.794	0.988	-10.6
(1 1 0)	0.061	0.657	0.718	-7.18
B75 cluster	0.163	0.716	0.879	-9.58
	Charge transfer	Charge transfer	Total charge	
	to O (e)	to HSO ₄ (e)	transfer (e)	
(0 0 1)	0.506	0.282	0.788	-7.91
(1 1 1)	0.371	0.295	0.666	-7.34

References

- 1. X. Wang and Y. D. Li, *Chem.-Eur. J.*, 2003, **9**, 300-306.
- 2. E. Saputra, S. Muhammad, H. Q. Sun, H. M. Ang, M. O. Tade and S. B. Wang, *Appl. Catal. B*, 2013, **142**, 729-735.
- 3. Y. J. Yao, Z. H. Yang, H. Q. Sun and S. B. Wang, *Ind. Eng. Chem. Res.*, 2012, **51**, 14958-14965.
- 3. Y. X. Wang, H. Q. Sun, H. M. Ang, M. O. Tade and S. B. Wang, *Chem. Eng. J.*, 2014, **245**, 1-9.