Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

-Supporting Information-

## Plant Oil and Amino Acid-Derived Elastomers with Rapid Room Temperature Self-Healing Ability

Wenjin Guo, Xiaohan Wang, Xingyuan Lu, Xiang Li, Yang Li\* and Junqi Sun

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China.

\* Corresponding author: yanglichem@jlu.edu.cn



Fig. S1 <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 500 MHz) spectrum of EOA.



Fig. S2 <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 500 MHz) spectrum of POA.



Fig. S3 <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 500 MHz) spectrum of POA-BTH.



Fig. S4 <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 500 MHz) spectrum of POA-His.



**Fig. S5** Photo images of (a) POA THF solution (0.67 M, 3 mL) and POA THF solutions mixed with (b) ZnCl<sub>2</sub> (19.0 mg), (c) CuCl<sub>2</sub> (18.7 mg) and (d) FeCl<sub>3</sub> (15.1 mg) salts.



**Fig. S6** (a) UV-Vis absorption titration spectra of THF solutions of POA-His  $(5.56 \times 10^{-3} \text{ M})$  with ZnCl<sub>2</sub>. (b) Diagram of the change of absorbance at 307 nm with the addition of ZnCl<sub>2</sub>. (c) UV-Vis absorption titration spectra of THF solutions of POA-His  $(5.56 \times 10^{-3} \text{ M})$  with CuCl<sub>2</sub>. (d) Diagram of the change of absorbance at 373 nm with the addition of CuCl<sub>2</sub>. (e) UV-Vis absorption titration spectra of THF solutions of THF solutions of POA-His  $(5.56 \times 10^{-3} \text{ M})$  with CuCl<sub>2</sub>. (e) UV-Vis absorption titration spectra of THF solutions of POA-His  $(5.56 \times 10^{-3} \text{ M})$  with FeCl<sub>3</sub>. (f) Diagram of the change of absorbance at 362 nm with the addition of FeCl<sub>3</sub>.



Fig. S7 DSC curves of POA-His, Zn<sup>2+</sup>/POA-His, Cu<sup>2+</sup>/POA-His and Fe<sup>3+</sup>/POA-His films.

**Table S1.** Mechanical properties of  $M^{n+}/POA$ -His films with  $M^{n+}$  being  $Zn^{2+}$ ,  $Cu^{2+}$  and  $Fe^{3+}$ .

|                      | Zn <sup>2+</sup> /POA-His | Cu <sup>2+</sup> /POA-His | Fe <sup>3+</sup> /POA-His |
|----------------------|---------------------------|---------------------------|---------------------------|
| Stress (MPa)         | 3.90                      | 4.22                      | 5.20                      |
| Strain (%)           | 231                       | 205                       | 178                       |
| Young's moduli (MPa) | 3.75                      | 4.03                      | 4.42                      |



Fig. S8 Stress-strain curves of (a)  $Zn^{2+}/POA$ -His, (b)  $Cu^{2+}/POA$ -His and (c) Fe<sup>3+</sup>/POA-His films before and after immersion in water.



Fig. S9 Microscope images of the cut  $Zn^{2+}/POA$ -His films after healing for (a) 10 s and (b) 1 h.



Fig. S10 Stress-strain curves of (a)  $Zn^{2+}/POA$ -His, (b)  $Cu^{2+}/POA$ -His and (c) Fe<sup>3+</sup>/POA-His films and the cut films after healing in water.



Fig. S11 (a) Recycling test of Fe<sup>3+</sup>/POA-His film. (b-d) Stress-strain curves of (b)  $Zn^{2+}/POA$ -His, (c) Cu<sup>2+</sup>/POA-His and (d) Fe<sup>3+</sup>/POA-His films after different cycles of recycling process.



**Fig. S12** UV-Vis absorption spectra of the pristine POA-His polymer and the recovered POA-His polymer.