Electronic Supplementary Information for

Cu supported on polymeric carbon nitride for selective CO₂ reduction into

CH₄: a combined kinetics and thermodynamics investigation

Jieyuan Li,^{a, b} Ping Yan,^a Kanglu Li,^a Junjie You,^a Hong Wang,^{b, c} Wen Cui,^{b, d} Wanglai Cen,^{a, e*}

Yinghao Chu^{a*} and Fan Dong^b

a College of Architecture and Environment, Institute of New Energy and Low Carbon Technology, National Engineering Research Center for Flue Gas Desulfurization, Sichuan University, Chengdu, Sichuan 610065, China.

b Research Center for Environmental Science & Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.

c Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.

d The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500, China.

e Department of Chemistry, Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712-0165, United States.

*To whom the correspondence should be addressed.

Email: cenwanglai@163.com and chuyinghao@scu.edu.cn

Table of Context

Figures
Figure S1. Constructed calculation models
Figure S2. Site tests for Au/CN
Figure S3. Site tests for Cu/CN
Figure S4. Line profile of the ELF calculationsS5
Figure S5. CO ₂ RR MEPs for the primary reaction pathways on Au/CN (part one)S6
Figure S6. CO ₂ RR MEPs for the primary reaction pathways on Au/CN (part two)S7
Figure S7. CO ₂ RR MEPs for the secondary reaction pathways on Au/CN (part one)S8
Figure S8. CO ₂ RR MEPs for the secondary reaction pathways on Au/CN (part two)S9
Figure S9. MEP for the path 2 on pristine CNS10
Figure S10. CO ₂ RR MEPs for the primary reaction pathways on Cu/CN (part one)S11
Figure S11. CO ₂ RR MEPs for the primary reaction pathways on Cu/CN (part two)S12
Figure S12. CO ₂ RR MEPs for the secondary reaction pathways on Cu/CNS13
Tables
Table S1. Summary of calculated results for the primary reaction pathways on Au/CNS14
Table S2. Summary of calculated results for the secondary reaction pathways on Au/CNS15
Table S3. Summary of calculated results for the primary reaction pathways on Cu/CNS16
Table S4. Summary of calculated results for the secondary reaction pathways on Cu/CNS17
Reaction pathways
Secondary reaction pathways on Au/CN
Secondary reaction pathways on Cu/CN

Figures:

Figure S1. Constructed calculation models of Au/CN (a) and Cu/CN (b). Brown, grey, yellow and blue spheres refer to C, N, Au and Cu atoms respectively.

Figure S2. Site tests for Au atom loading into CN.

Figure S3. Site tests for Cu atom loading into CN.

Figure S4. Line profile of the electronic localization function (ELF) calculations for Au/CN and Cu/CN.

Figure S5. CO₂RR MEPs for the primary reaction pathways on Au/CN (part one). The blue, brown, gold, red and pink spheres refer to N, C, Au, O and H atoms respectively. The positive and negative of energies depict energy absorption and release respectively.

Figure S6. CO₂RR MEPs for the primary reaction pathways on Au/CN (part two). The blue, brown, gold, red and pink spheres refer to N, C, Au, O and H atoms respectively. The positive and negative of energies depict energy absorption and release respectively.

Figure S7. CO₂RR MEPs for the secondary reaction pathways on Au/CN (part one). The blue, brown, gold, red and pink spheres refer to N, C, Au, O and H atoms respectively. The positive and negative of energies depict energy absorption and release respectively.

Figure S8. CO₂RR MEPs for the secondary reaction pathways on Au/CN (part two). The blue, brown, gold, red and pink spheres refer to N, C, Au, O and H atoms respectively. The positive and negative of energies depict energy absorption and release respectively.

Figure S9. MEP for the path 2 on pristine CN. The blue, brown, red and pink spheres refer to N, C, O and H atoms respectively. The positive and negative of energies depict energy absorption and release respectively.

Figure S10. CO₂RR MEPs for the primary reaction pathways on Cu/CN (part one). The light blue, brown, blue, red and pink spheres refer to N, C, Cu, O and H atoms respectively. The positive and negative of energies depict energy absorption and release respectively.

Figure S11. CO₂RR MEPs for the primary reaction pathways on Cu/CN (part two). The light blue, brown, blue, red and pink spheres refer to N, C, Cu, O and H atoms respectively. The positive and negative of energies depict energy absorption and release respectively.

Figure S12. CO_2RR MEPs for the secondary reaction pathways on Cu/CN. The light blue, brown, blue, red and pink spheres refer to N, C, Cu, O and H atoms respectively. The positive and negative of energies depict energy absorption and release respectively.

Tables:

	$\Delta G_{\rm ads}$, eV	$\Delta G_{\rm a}$, eV	$\Delta G_{\rm r}$, eV	$\Delta G_{\rm des}$, eV	<i>f/i</i> , cm ⁻¹
path 1	-0.19	/	/	/	/
path 2	/	0.34	-0.16	/	401
path 3	/	0.08	-1.17	/	205
path 4	/	/	/	0.11	/
path 5	/	0.12	-0.39	/	145
path 6	/	0.15	-0.16	/	247
path 7	/	0.17	-0.10	/	198
path 8	/	0.23	-0.11	/	332
path 9	/	/	/	-0.32	/

Table S1. Summary of calculated results for the primary reaction pathways on Au/CN.

 ΔG_{ads} , ΔG_a , ΔG_r , ΔG_{des} and f/i depict the adsorption free energy, activation free energy, reaction free energy, desorption free energy and imaginary frequency, respectively. Positive and negative of the energies refer to energy absorption and release respectively.

	$\Delta G_{\rm a}$, eV	$\Delta G_{\rm r}$, eV	$\Delta G_{\rm des},{ m eV}$	<i>f/i</i> , cm ⁻¹
path 10	0.28	-0.44	/	357
path 11	1.30	0.15	/	542
path 12	0.32	-0.72	/	264
path 13	/	/	0.45	/
path 14	0.92	-0.09	/	574
path 15	1.34	0.47		
path 16	0.99	0.15	/	662

Table S2. Summary of calculated results for the secondary reaction pathways on Au/CN.

 $\Delta G_{\rm a}$, $\Delta G_{\rm r}$, $\Delta G_{\rm des}$ and f/i depict the activation free energy, reaction free energy, desorption free energy and imaginary frequency, respectively. Positive and negative of the energies refer to energy absorption and release respectively.

	$\Delta G_{\rm ads}$, eV	$\Delta G_{\rm a},{ m eV}$	$\Delta G_{\rm r}, {\rm eV}$	$\Delta G_{\rm des},{\rm eV}$	<i>f/i</i> , cm ⁻¹
path 1	-0.18	/	/	/	/
path 2	/	0.37	-0.11	/	224
path 3	/	0.13	-1.28	/	111
path 4	/	0.22	-0.22	/	254
path 5	/	0.17	-0.68	/	191
path 6	/	0.10	-0.46	/	209
path 7	/	0.18	0.02	/	275
path 8	/	0.24	0.09	/	176
path 9	/	0.08	-0.27	/	254
path 10	/	/	/	0.25	/

Table S3. Summary of calculated results for the primary reaction pathways on Cu/CN.

 ΔG_{ads} , ΔG_a , ΔG_r , ΔG_{des} and f/i depict the adsorption free energy, activation free energy, reaction free energy, desorption free energy and imaginary frequency, respectively. Positive and negative of the energies refer to energy absorption and release respectively.

	$\Delta G_{\rm a}$, eV	$\Delta G_{\rm r},{\rm eV}$	$\Delta G_{\rm des}$, eV	<i>f/i</i> , cm ⁻¹
path 11	0.64	0.18	/	499
path 12	/	/	0.51	/
path 13	0.26	-0.29	/	287
path 14	/	/	0.33	/
path 15	0.25	-0.30	/	195
path 16	/	/	0.41	/

Table S4. Summary of calculated results for the secondary reaction pathways on Cu/CN.

 $\Delta G_{\rm a}$, $\Delta G_{\rm r}$, $\Delta G_{\rm des}$ and f/i depict the activation energy, reaction energy, desorption energy and imaginary frequency, respectively. Positive and negative of the energies refer to energy absorption and release respectively.

Reaction pathways:

Secondary reaction pathways on Au/CN

$\text{COOH}^* + \text{H}^+ + \text{e}^- \rightarrow \text{HCOOH}^*$	path 10 (Au/CN)
$\mathrm{CO}^* + \mathrm{H}^+ + \mathrm{e}^- \rightarrow \mathrm{COH}^*$	path 11 (Au/CN)
$\mathrm{HCO}^{*} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow \mathrm{CHOH}^{*}$	path 12 (Au/CN)
HCHO [*] →HCHO↑	path 13 (Au/CN)
$\mathrm{HCHO}^* + \mathrm{H}^+ + \mathrm{e}^- \rightarrow \mathrm{CH}_3\mathrm{O}^*$	path 14 (Au/CN)
$\mathrm{CH_2OH}^* + \mathrm{H^+} + \mathrm{e^-} \rightarrow \mathrm{CH_2}^* + \mathrm{H_2O}$	path 15 (Au/CN)
$CH_3OH^* + H^+ + e^- \rightarrow CH_3^* + H_2O$	path 16 (Au/CN)

Secondary reaction pathways on Cu/CN

$\text{COOH}^* + \text{H}^+ + \text{e}^- \rightarrow \text{CO}^* + \text{H}_2\text{O}$	path 11 (Cu/CN)
$\mathrm{HCOOH}^* \to \mathrm{HCOOH} \uparrow$	path 12 (Cu/CN)
$\mathrm{HCO}^{*} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow \mathrm{CHOH}^{*}$	path 13 (Cu/CN)
HCHO [*] →HCHO↑	path 14 (Cu/CN)
HCHO [*] + H ⁺ + $e^- \rightarrow CH_3O^*$	path 15 (Cu/CN)
$CH_{3}OH^{*} \rightarrow CH_{3}OH^{\uparrow}$	path 16 (Cu/CN)