Supplementary Information for

Sequential Condensation Route as a Versatile Platform for Low Cost and Efficient Hole Transport Material in Perovskite Solar Cell

Scheme 1. Molecular structure and synthetic routes for BEDN.

S1. NMR images of products:

Figure S1. $^{1}H/$ ^{13}C NMR of BEDN in CDCl₃ solvent.

Figure S2. $^{1}H/^{13}C$ NMR of BEDN in CDCl₃ solvent.

	Glass/spiro-OMeTAD	Glass/ BEDN
1 μm	SEM MAG: 50.0 kx Det: InBeam	SEM MAG: 50.0 kx Det: InBeam
500 nm	SEM MAG: 100 kx Det: InBeam	SEM MAG: 100 kx Det: InBeam MIRA3 TESCAN WD: 5.08 mm BI: 7.00 500 nm

Figure S3. FE-SEM images of the top view of the cells with structures Glass/spiro-OMeTAD (left) and Glass/ BEDN (right).

Figure S4. FE-SEM images of the top view of the cells with structure Glass/meso-TiO₂/spiro-OMeTAD (left) and Glass/meso-TiO₂/BEDN (right).

Quantitative Results

Elt	XRay	Int	Error	к	Kratio	W%	A%	ZAF	Formula	Ox%	Cat#
-											
С	Ka	7.4	2.7611	0.2325	0.1074	21.29	26.67	0.5043		0.00	0.00
Ν	Ka	0.3	2.7611	0.0101	0.0047	1.62	1.74	0.2867		0.00	0.00
0	Ka	45.1	2.7611	0.7327	0.3384	75.64	71.14	0.4470		0.00	0.00
Ti	Ka	1.5	0.1950	0.0247	0.0114	1.45	0.46	0.7867		0.00	0.00
				1.0000	0.4618	100.00	100.00			0.00	0.00

Elt	XRay	Int	Error	к	Kratio	W%	Α%	ZAF	Formula	Ox%	Cat#
С	Ka	29.0	4.3299	0.2507	0.1076	21.09	26.07	0.5101		0.00	0.00
N O	Ka Ka	3.5 159.5	4.3299 4.3299	0.0370 0.7123 1.0000	0.0159 0.3057 0.4292	5.49 73.42 100.00	5.82 68.12 100.00	0.2892 0.4161		0.00 0.00 0.00	0.00 0.00 0.00

Elt	XRay	Int	Error	к	Kratio	W%	A%	ZAF	Formula	Ox%	Cat#
0	14 -	<u> </u>	04 5007	0.0040	0.0040	47.00	54.00	0.0400		0.00	0.00
C	ка	69.2	24.5607	0.6840	0.2919	47.38	54.69	0.6160		0.00	0.00
Ν	Ka	0.7	24.5607	0.0084	0.0036	2.56	2.53	0.1399		0.00	0.00
0	Ka	56.5	24.5607	0.2888	0.1232	49.03	42.48	0.2513		0.00	0.00
Ti	Ka	3.5	0.3933	0.0189	0.0080	1.04	0.30	0.7768		0.00	0.00
				1.0000	0.4267	100.00	100.00			0.00	0.00

Figure S5. EDS images of the top view of the cells with structure Glass/meso-TiO₂/HTM and Glass/meso-TiO₂/HTM.

Figure S6. J-V curves of PSCs based on dopant-free BEDN and dopant-free spiro-OMeTAD HTMs.

HTMs	VOC [V]	JSC [mA cm ⁻²]	FF [%]	PCE [%]	
Dopant-free BEDN	0.88	16.12	50	7.10	
Dopant-free spiro-OMeTAD	0.86	15.72	44	5.94	

Table S1. The photovoltaic parameters derived from J-V curves for the PSCs based on dopant-free HTMs.

Figure S7. $J^{1/2}$ -V curves of dopant-free BEDN and spiro-OMeTAD based devices with a architecture of ITO/PEDOT:PSS/HTMs/Au.

Figure S8. J^{1/2}-V curves of BEDN and spiro-OMeTAD based devices with a architecture of ITO/PEDOT:PSS/HTMs:Dopants/Au.

S2. Synthesis cost estimation of 1 gram BEDN

We estimated the synthesis cost of 1 gram BEDN according to the cost models of Petrus et al.¹ and Osedach et al.² The price of the materials used has been obtained from Merck, Sigma Aldrich, DeJong companies. We compared the price of 1 gram of this new HTM with the price of 1 gram of spiro-OMeTAD, which is reported in the literature.³⁻⁵

Chemical	Weight reagent (g)	Weight solvent (g)	Weight workup (g)	Price of Chemical (\$/kg)	Material cost (\$/g product)	Cost per step (\$/step)
3,4-Diaminobenzophenone	0.422			580	0.24	
benzil	0.42			350	0.151	
Ethanol	-	39.45	-	15.23	0.6	0.98
Ethanol	-	-	15.78	9.53	0.15	
CH ₃ COOH	-	2.1	-	40.12	0.08	
1,5-Diaminonaphthalene	0.078	-	-	1460	0.11	
CH ₃ COOH	-	5		40.12	0.2	0.4
CH ₃ COOH			10	10	0.1	
Total	0.92	46.55	25.78	-	-	1.38

Table S2. Materials quantities and cost for the synthesis of BEDN.

References:

- 1. M. Petrus, T. Bein, T. Dingemans and P. Docampo, J. Mater. Chem. A, 2015, 3, 12159-12162.
- 2. T. P. Osedach, T. L. Andrew and V. Bulović, Energy Environ. Sci., 2013, 6, 711-718.

3. B. Xu, D. Bi, Y. Hua, P. Liu, M. Cheng, M. Grätzel, L. Kloo, A. Hagfeldt and L. Sun, *Energy Environ. Sci.*, 2016, **9**, 873-877.

4. M. Saliba, S. Orlandi, T. Matsui, S. Aghazada, M. Cavazzini, J.-P. Correa-Baena, P. Gao, R. Scopelliti,

E. Mosconi and K.-H. Dahmen, *Nat. Energy*, 2016, 1, 15017.

5. C. H. Teh, R. Daik, E. L. Lim, C. C. Yap, M. A. Ibrahim, N. A. Ludin, K. Sopian and M. A. M. Teridi,

J. Mater. Chem. A, 2016, 4, 15788-15822.