Construction of Strawberry-like Ni₃S₂@Co₉S₈ Heteronanoparticle-

Embedded Biomass-Derived 3D N-doped Hierarchical Porous Carbon

for Ultrahigh Energy Density Supercapacitors

Shifu Wang,^a Zuoyi Xiao,^a* Shangru Zhai,^a Haisong Wang,^a Weijie Cai,^a Longfei Qin,^a Jianying Huang,^a Di Zhao,^a Zhongcheng Li^b and Qingda An^a*

- a. Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China.
- b. Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

*Corresponding authors.

E-mail: zyxiao80@163.com (Prof. Z. Xiao), anqingdachem@163.com (Prof. Q. An).

Fig. S1 Nitrogen adsorption-desorption isotherms of $Ni_3S_2@Co_9S_8/N$ -HPC-600, $Ni_3S_2@Co_9S_8/N$ -HPC-700, $Ni_3S_2@Co_9S_8/N$ -HPC-800 and $Ni_3S_2@Co_9S_8/N$ -HPC-900.

Sample	S _{BET} (m ² g ⁻¹)	S _{mic} (m ² g ⁻¹)	V _{pore} (cm ³ g ⁻¹)	V _{mic} (cm ³ g ⁻¹)	Average pore size (nm)
Ni ₃ S ₂ @Co ₉ S ₈ /N- HPC-600	122.8	76.7	0.075	0.017	4.58
Ni ₃ S ₂ @Co ₉ S ₈ /N- HPC-700	274.7	84.6	0.186	0.017	4.98
Ni ₃ S ₂ @Co ₉ S ₈ /N- HPC-800	360.1	73.7	0.258	0.106	5.29
Ni ₃ S ₂ @Co ₉ S ₈ /N- HPC-900	46.2	12.9	0.068	0.003	6.19

 Table S1 Structural parameters of $Ni_3S_2@Co_9S_8/N$ -HPC-600, $Ni_3S_2@Co_9S_8/N$ -HPC-700, $Ni_3S_2@Co_9S_8/N$ -HPC-800 and $Ni_3S_2@Co_9S_8/N$ -HPC-900.

Fig. S2 (a-b) SEM images of $Ni_3S_2@Co_9S_8/N$ -HPC-900 at different magnifications.

Fig. S3 Pore distribution diagrams of $Ni_3S_2@Co_9S_8/N$ -HPC-600, $Ni_3S_2@Co_9S_8/N$ -HPC-700, $Ni_3S_2@Co_9S_8/N$ -HPC-800 and $Ni_3S_2@Co_9S_8/N$ -HPC-900.

Fig. S4 High-resolution C 1s and N 1s XPS spectra of $Ni_3S_2@Co_9S_8/N$ -HPC-800.

Fig. S5 (a-f) EDS mapping of the ZIF-NC-800. Map sum spectrum and the content of different

elements	on	the	surface	of	ZIF-NC-800.
	-			-	

Element	ZIF-NC-800 (At. %)	Ni ₃ S ₂ @Co ₉ S ₈ /N-HPC-800 (At. %)
C1s	83.59	75.62
N1s	8.35	3.65
Ols	6.12	14.54
S2p	0.00	1.66
Co2p	1.38	1.57
Ni 2p	0.00	2.96

Table S2 The content of different elements on the surface of ZIF-NC-800 and $Ni_3S_2@Co_9S_8/N$ -HPC-800.

Table S3	Structural	parameters	of HPC.
----------	------------	------------	---------

Samples	$S_{BET}(m^2 g^{-1})$	V_{pore} (cm ³ g ⁻¹)	Pore size (nm)
HPC-700	438.1	0.758	8.54

materials	capacitance	current density	ala atua la ta	C
	(F g ⁻¹)	(A g ⁻¹)	electrolyte	reference
CoS _x /S	618	2	1 M KOH	1
CoS nanocages	1475	1	1 M KOH	2
$Ni_{3x}Co_{3-3x}S_4$	696	1	6 M KOH	3
Ni-Co-S/NF	1406.9	0.5	1 M KOH	4
Co ₉ S ₈ /NS-C	734	1	6 M KOH	5
NiCo-MOF	1202.1	1	2 M KOH	6
Ni_3S_2	1370.4	2	6 M KOH	7
Ni@rGO-Ni ₃ S ₂	987.8	1.5	6 M KOH	8
NF@rGO/Ni ₃ S ₂	816.8	0.98	6 M KOH	9
Ni ₃ S ₂ @Co ₉ S ₈ /N-	1070 5	0.5	6 M KOH	This work
HPC-800	17/0.3	0.5	0 WI KUH	THIS WOLK

Table S4. Comparison of the specific capacitance of $Ni_3S_2@Co_9S_8/N$ -HPC-800 with other reported works.

Fig. S7 (a) CV curves at different scan rates from 5 to 100 mV s⁻¹, (b) GCD curves at various current densities for $Ni_3S_2@Co_9S_8/N$ -HPC-600.

Fig. S8 (a) CV curves at different scan rates from 5 to 100 mV s⁻¹, (b) GCD curves at various current densities for $Ni_3S_2@Co_9S_8/N$ -HPC-700.

Fig. S9 (a) CV curves at different scan rates from 5 to 100 mV s⁻¹, (b) GCD curves at various current densities for $Ni_3S_2@Co_9S_8/N$ -HPC-900.

Fig. S10 (a) CV curves at different scan rates from 5 to 100 mV s⁻¹, (b) GCD curves at various current densities for Co_9S_8/N -HPC-800.

Fig. S11 (a) CV curves at different scan rates from 5 to 100 mV s⁻¹, (b) GCD curves at various current densities for Ni_2S_3/N -HPC-800.

Fig. S12 (a) CV curves at different scan rates from 5 to 100 mV s⁻¹, (b) GCD curves at variouscurrentdensitiesforZIF-NC-800.

Fig. S13 (a) CV curves at different scan rates from 5 to 100 mV s⁻¹, (b) GCD curves at various current densities for HPC.

Fig. S14. Comparison of the cycling stability of Ni_3S_2/N -HPC-800, Co_9S_8/N -HPC-800 and $Ni_3S_2@Co_9S_8/N$ -HPC-800.

Fig. S15 (a) CV curves at different scan rates and (b) GCD curves at different current densities of the Co_9S_8/N -HPC-800//HPC asymmetrical supercapacitor.

Fig. S16 (a) CV curves at different scan rates and (b) GCD curves at different current densities of the Ni_3S_2/N -HPC-800//HPC asymmetrical supercapacitor.

Fig. S17 (a) CV curves at different scan rates and (b) GCD curves at different current densities of the ZIF-NC-800//HPC asymmetrical supercapacitor.