Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supplementary information

Salt-assisted Pyrolysis of Covalent Organic Frameworks into Porous Heteroatomdoped Carbons for Supercapacitive Energy Storage

Dongwan Yan,‡^a Yang Wu,‡^{*a,b} Ryo Kitaura ^a and Kunio Awaga^{*a,b}

^aDepartment of Chemistry, Graduate School of Science, Nagoya University, Furo-

cho, Chikusa-ku, Nagoya 464-8602, Japan

^bIntegrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University,

Furo-cho, Chikusa-Ku, Nagoya 464-8602, Japan

[‡]These authors contributed equally.

*E-mail: wu.yang@f.mbox.nagoya-u.ac.jp (Y.W.).

*E-mail: awaga.kunio@b.mbox.nagoya-u.ac.jp. (K.A).

1. Materials and Method

All the solvents were purchased from Kanto Chemicals. All chemicals were purchased from TCI. Commercial carbon black VXC72R and Super P were purchased from Tokai carbon and Alfa Aesar, respectively.

1.1 Characterization

Fourier transform infrared (FT-IR) spectra run by a PerkinElmer Spectrum One FT-IR spectrometer using ATR. Scanning electron microscope (SEM) images were obtained on a Hitachi S-4300 field emission SEM. The nitrogen adsorption and desorption isotherms were recorded at 77 K by a BELSOR mini II surface analyser and the specific surface areas were calculated by Brunauer-Emmett-Teller (BET) method. The pore size and pore volume distribution were obtained from the adsorption isotherms by NL-DFT analysis. Powder X-ray diffraction (PXRD) measurement was carried by a Rigaku MultiFlex X-ray diffractometer with the increment of 0.02° and diffraction angle range from 1.5 to 60°. Elemental analysis was recorded on a PerkinElmer 2400 series II CHN elemental analyser. JEOL JEM-2100 plus Field Emission Electron Microscope was used for the high-resolution transmission electron microscopy (HR-TEM) images with the acceleration voltage of 200 kV. High-angle annular dark field (HAADF)-scanning TEM (STEM) was used for the elements mapping at the acceleration voltage of 200 kV. X-ray photoelectron spectroscopy (XPS) data was processed on VG Scientific ESCALab250 with the X-ray source of Al-Ka radiation. Raman spectra were obtained on a HORIBA LabRAM HR-800 excited by 488 nm He-Ne laser with the laser power of 600 µW. Thermal gravimetrical analysis (TGA) plots were obtained on an Exstar TG/DTA 6200 thermal analyser with the ramp up rate of 5 °C min⁻¹ using alumina crucibles.

1.2 Electrochemical measurements

1.2.1 Preparation of electrodes for three-electrode system.

The active material slurry was prepared by sonicating of a mixture of active material (NDC-T0, NDC-T1, VXC72R or Super P) (90 wt%) and polyvinylidene fluoride (PVDF) binder (10 wt%) in anhydrous N-Methyl-2-pyrrolidone (NMP) for 1 hour. Then the slurry was coated onto the top of a glassy carbon (GC) electrode with a diameter of 0.5 cm. The active material on the electrode were calculated to be 0.1 mg cm⁻².

1.2.2 Electrochemical characterization for three-electrode system.

Electrochemistry plots were conducted on a BioLogic SP-150 single potentiostat electrochemical workstation using a standard three-electrode system in 1M H_2SO_4 aqueous solution. Active material coated glassy carbon electrode was used as a working electrode, Pt wire was used for a counter electrode, and an aqueous Ag/AgCl electrode was used as a reference electrode. The specific capacitances (C_s , F g⁻¹) of the electrodes could be evaluated from the GCD profiles based on the equation, i.e., C_s =

 $(I \times \Delta t)/(m \times \Delta V)$, in which, I, Δt , m and ΔV are the discharging current (A), the discharging time (s), the mass of active materials in the electrode (g), and the discharging potential window (V), respectively.

1.2.3 Preparation of electrodes for two-electrode system.

ONC-T1s/CNT hybrid thin films: A mixture of ONC-T1s (10 mg) and CNT (5 mg) were dispersed in DMF (40 ml) using bath sonication for 2 hours. Then, 10 ml of suspension was filtrated through a polytetrafluoroethylene (PTFE) membrane filter (pore size = 0.2μ m, diameter = 25 mm, Merck Millipore) by vacuum filtration. After filtration, the film was washed with ethanol (10 ml) and dried under vacuum for 12h. Then the ONC-T1s/CNT hybrid thin film was peeled off from the filter membrane. The loading weight of ONC-T1s is around 1 mg cm⁻².

Pure CNT thin film: 15 mg of CNT was dispersed in DMF (40 ml) using bath sonication for 2 hours. Then, 10 ml of suspension was filtrated through a polytetrafluoroethylene (PTFE) membrane filter (pore size = 0.2μ m, diameter = 25 mm, Merck Millipore) by vacuum filtration. After filtration, the film was washed with ethanol (10 ml) and dried under vacuum for 12h. Then the CNT thin film was peeled off from the filter membrane.

1.2.4 Electrochemical characterization for two-electrode system.

In a two-electrode system, a symmetrical supercapacitor was prepared from two similar-quality electrodes and separated by a filter paper. The electrochemical performance was tested in 1 M H₂SO₄ aqueous solution. The specific capacitance was calculated according to the following equation: $C_s = (2I \times \Delta t)/(m \times \Delta V)$, where C_s (F g⁻¹) is the specific capacitance, I (A) is the discharge current, m (g) is the mass of active material on the one electrode, and ΔV (V) is the potential window.

2. Supplementary Figures

Fig. S1. PXRD pattern of AQ-COF.

Fig. S2. SEM images of (a) AQ-COF and (b) K₂CO₃@AQ-COF.

Fig. S3. Photo images of AQ-COF, K₂CO₃@AQ-COF and ONCs.

Fig. S4. Raman spectra of ONCs.

Fig. S5. Pore size and pore volume distribution profiles of ONCs.

Fig. S6. Analysis of the Thermal Stability of ONCs in air with TGA.

Fig. S7. (a) EDX spectra of ONC-T0-700 and ONC-T1-700. Elemental mapping images of (b) ONC-T0-700 and (c) ONC-T1-700, scale bar = 500 nm.

Fig. S8. (a) XPS survey spectra of ONCs. High-resolution XPS spectra of O1s (b-e) and N1s (f-i) in ONCs.

Fig. S9. CV curves of ONC-T0-700 (a-c) and ONC-T0-850 (d-f) recorded at different scan rates.

Fig. S10. CV curves of ONC-T1-700 (a and b) and ONC-T1-850 (c and d) recorded at different scan rates.

Fig. S11. (a) The equivalent circuit model and (b) the fitting results for EIS of ONC-T0-700, ONC-T0-850, ONC-T1-700 and ONC-T1-850.

Fig. S12. GCD profiles of ONC-T0-700 (a) and ONC-T0-850 (b) recorded at different current densities.

Fig. S13. CV curves of VXC72R (a and b) and Super P (c and d) recorded at different scan rates.

Fig. S14. GCD profiles of VXC72R (a) and Super P (b) recorded at different current densities.

Fig. S15. Photo images of free-standing flexible paper-like ONC-T1s/CNT hybrid thin films.

Fig. S16. SEM images of (a) pure CNT film, (b) ONC-T1-700/CNT and (c) ONC-T1-850/CNT hybrid thin films.

Fig. S17. GCD profile of pure CNT electrodes at a current density of 0.1 A g^{-1} in a twoelectrode system.

3. Supplementary Tables

Table S1. Summary of porosity of different COF-derived carbon materials reported to date.

Materials	S _{ВЕТ} (m ² g ⁻¹)	Pore Volumn (cm ³ g ⁻¹)	Method	Reference
ONC-T1-700	3451	2.10	K ₂ CO ₃ , N ₂ , 700°C, 2 h	
ONC-T1-850	1518	1.10	K ₂ CO ₃ , N ₂ , 850°C, 2 h	
ONC-T1-550	823	0.58	K ₂ CO ₃ , N ₂ , 550°C, 2 h	This work
ONC-T0-850	157	0.22	N ₂ , 850°C, 2 h	
ONC-T0-700	116	0.32	N ₂ , 700°C, 2 h	
ONC-T0-550	83	0.24	N ₂ , 550°C, 2 h	
BS-COF-C900	720.57	0.39	N ₂ , 900°C, 2 h	Adv. Eurot Motor
BS-COF-C700	560.29	0.26	N ₂ , 700°C, 2 h	2019 29 1900161
B-COF-C900	446.2	0.2	N ₂ , 900°C, 2 h	2010, 20, 1000101
NC-500	87.6	0.27	N ₂ , 500°C, 2 h	
NC-600	74.3	0.22	N ₂ , 600°C, 2 h	Appl. Catal. B-
NC-700	52.4	0.2	N ₂ , 700°C, 2 h	25-35
NC-800	253.6	0.39	N ₂ , 800°C, 2 h	20 00
MPC	679	0.476	200°C,1h anneal, 800°C,3h	Appl. Surf. Sci., 2018, 439, 833-838
PA@TAPA-DHTA-COF1000	495	0.28	Phytic acid, N₂, 1000°C, 3 h	Adv Mater 2019
PA@TAPA-DHTA- COF1000NH3	1160	0.59	Phytic acid, N ₂ , 1000°C, 3 h; NH ₃ , 900°C, 0.5h	30, 1706330
TAPT- DHTACOF0.05@PPZS900	533	0.25		Cham Commun
TAPT- DHTACOF _{0.1} @PPZS ₉₀₀	456	0.22	N ₂ , 900°C, 3 h	2017, 53, 11690-
TAPT- DHTACOF0.2@PPZS900	421	0.2		11035
Carbonized ACOF1	1596	1.48		Chem. Eur. J., 2017,
Carbonized COF1	538	0.22	וא ₂ , אטט C, 10 h	23, 17504-17510
N(G1)	927	0.959	N ₂ , 900°C, 4 h	

N(G2)	1147	0.961	Fe(acac) ₃ , N ₂ , 900°C, 4 h	
N(G3)	844	0.96	Co(acac) ₂ , N ₂ , 900°C, 4 h	J. Mater. Chem. A, 2017, 5, 4343
N(G4)	893	0.959	Ni(acac)₂, N₂, 900°C, 4 h	
BC-MS-700-3	965	0.8057	3wt % ZnCl₂, Ar, 700°C, 3h	
BC-MS-700-7	1293	1.5318	7wt % ZnCl₂, Ar, 700°C, 3h	
BC-MS-700-14	1460	1.7678	14wt % ZnCl ₂ , Ar, 700°C, 3h	J. Mater. Chem. A,
BC-MS-700-21	1329	1.8598	21wt % ZnCl ₂ , Ar, 700°C, 3h	2016, 4, 4273
BC-MS-900-3	821	-	3wt % ZnCl₂, Ar, 900°C, 3h	
BC-MS-1100	762	-	Ar, 1100°C, 3h	
NPC700	357	0.43	N₂, 200°C, 1 h, 700°C, 3h	
NPC800	525	0.67	N₂, 200°C, 1 h, 800°C, 3h	ACS Appl. Mater. Interfaces, 2013, 5,
NPC900	398	0.48	N₂, 200°C, 1 h, 900°C, 3h	10200-10207
POF-C-1000	785	0.701	Furfuryl alcohol, Ar, 1000°C, 3h,	Ohanna Farra I
POF-C-800	335	0.564	Furfuryl alcohol, Ar, 800°C, 3h,	Cnem. Eur. J., 2013,19, 974-980
POF-DC-1000	100	0.246	Ar, 1000°C, 3h,	

Samples	Element amount (wt%)							
Samples	С	0	N	Н				
AQ-COF	66.45	22.02	7.53	4.00				
ONC-T0-700	86.58	6.93	6.36	1.13				
ONC-T1-550	74.31	16.39	6.11	3.19				
ONC-T1-700	93.95	4.55	0.89	0.61				
ONC-T1-850	81.81	16.50	1.32	0.37				

Table S2. Elemental analysis results of AQ-COF and ONCs.

Table S3. Summary of supercapacitor performance of different carbon-based supercapacitors reported to date. (Sorted by specific capacitance in descending order)

Materials	S _{BET} (m ² g ⁻¹)	Specific Capacitance	Testing condition	Rate	Electrolyte	Reference
	(8)	(F g ⁻¹)				
ONC-T1- 850	1518	1711	Glassy carbon Three- electrode	1 A g ⁻¹	1 M H ₂ SO ₄	This work
OMFLC- N (SM)	-	855	3D- graphene Three- electrode	1 A g ⁻¹	0.5M H ₂ SO ₄	Science, 2015, 350, 1508–1513.
ONC-T1- 700	3451	768	Glassy carbon Three- electrode	1 A g ⁻¹	1 M H ₂ SO ₄	This work
OMFLC- N (S2)	-	730	3D- graphene Three- electrode	1 A g ⁻¹	0.5M H ₂ SO ₄	Science, 2015, 350, 1508–1513.
OMFLC- N (S1)	1580	715	3D- graphene Three- electrode	1 A g ⁻¹	0.5M H ₂ SO ₄	Science, 2015, 350, 1508–1513.
OMFLC- N (S3)	-	665	3D- graphene Three- electrode	1 A g ⁻¹	0.5M H ₂ SO ₄	Science, 2015, 350, 1508–1513.
NG sheets	1555.4	641.6	Nickel foam Three- electrode	1 A g ⁻¹	6 M KOH	ACS Appl. Mater. Interfaces, 2014, 6,

						15583- 15596
NG hydrogel	297	441	Platinium foil Two- electrode	1 A g ⁻¹	1 M H ₂ SO ₄	Adv. Mater., 2013, 25, 5779-5784
NCNFs	2527.7	420	Carbon- coated nickel Two- electrode	5 mV s ⁻¹	1 M H ₂ SO ₄	J. Power Sources, 2013, 234, 285-291
HP porous NC spheres	2118	407.9	Nickel foam Three- electrode	1 mV s ⁻¹	6 M KOH	Chem. Commun., 2014, 50, 12091- 12094
Porous NC spheres	2105.9	398	Glassy carbon Three- electrode	0.2 A g ⁻¹	6 M KOH	J. Mater. Chem. A, 2014, 2, 3317-3324
Graphene Quantum Dots	2829	388	Nickel foam Three- electrode	1 A g ⁻¹	6 M KOH	J. Mat. Chem. A, 2019, 7, 6021-6027
Porous NCs	3012	385	Nickel foam Two- electrode	0.05 A g ⁻¹	6 M KOH	J. Mater. Chem., 2012, 22, 19088- 19093
HP NCNTs	3253	365.9	Nickel foam Three- electrode	0.1 A g ⁻¹	6 М КОН	J. Mater. Chem. A, 2014, 2, 12545- 12551
Porous NCs	1463	363	Titanium mesh Three- electrode	0.1 A g ⁻¹	1 M H ₂ SO ₄	Carbon, 2014, 68, 185-194

			Nickel				
NG sheets	593	362	foam	0.2 A g ⁻¹	6 M KOH	RSC Adv., 2012, 2,	
			Three- electrode	0		4498-4506	
			Nickel foam			Nanoscale,	
3D porous NCs	2725	342	Three-	0.2 A g ⁻¹	6 M KOH	2014, 6, 13831-	
			electrode			13837	
			Nickel foam			Electrochim	
Porous NCs	2236	341	Trave	0.2 A g ⁻¹	6 M KOH	. Acta, 2015, 160,	
			electrode			152-159	
			Nickel			Energy	
Porous NC	1306	340	Ioam	1 A g ⁻¹	6 М КОН	Environ.	
nanopiates			Three- electrode			7, 379-386	
			Nickel			Electrochim	
Porous	645	340	foam	0.1 A	6 M KOH	. Acta,	
NCs			Three-	g			2015,166, 1-11
			Nickel			Electroche	
Porous NC	516	227	foam	0.1 A	6 M VOU	m.	
nanowires	510	327	Three-	g ⁻¹	6 M KOH	2011, 13,	
			electrode			242-246	
NG			carbon			J. Mater. Chem. A.	
hydrogel	1521	326	Three-	1 A g ⁻¹	6 M KOH	2013, 1,	
			electrode			2248-2255	
Mesonoro			Nickel foil	0.5 A		Energy Environ	
us NCs	2879	318.2	Three- electrode	g ⁻¹	6 M KOH	Sci., 2013,	
			Glassy			ChemPhyse	
Ordered	1374	308	carbon	0.2 A		hem, 2014,	
us NCs	10/1	200	Three-	g ⁻¹	1 111 112004	15, 2084- 2093	

Nanoporo us carbons	803	306	Carbon- cloth	0.5 A	1 M H ₂ SO ₄	Chem. Commun., 2019, 55
NPC-2			Three- electrode	Б		2305-2308
Hollow	752	206	Steel mesh	0.1 A	2 M U SO	J. Mater. Chem.,
spheres	spheres 755 500 Three- g ⁻¹ electrode	2 M H ₂ SO ₄	2012, 22, 13464- 13468			
Porous			Nickel foam	0.1 A		Carbon,
NGs/G	1646	300	Three- electrode	g ⁻¹	6 M KOH	2014, 70, 130-141
			Steel mesh	0.2.1		Energy Environ.
NC networks	1724	298	Three- electrode	0.2 A g ⁻¹	1 M H ₂ SO ₄	Sci., 2012, 5, 9747- 9751
			Nickel foam			Carbon,
NG sheets	412.3	295	Three-	5 A g ⁻¹	6 M KOH	2014, 69, 66-78
N. dorod			Glassy			J. Mater.
carbon nanosheets	1169	294	Three- electrode	0.5 A g ⁻¹	A 6 M KOH Chem. 2015, 3 13210	Chem. A, 2015, 3, 13210
Nitrogen- and oxygen-	1022	292	Titanium mesh	0.5 A	6 M KOH	RSC. Adv., 2019, 8,
doped carbon			Three- electrode	g		3869-3877
NC about		282	Nickel foil	1 •1		Nano Lett.,
ING sheets	-	282	Two- electrode	IAG	0 M KOH	2011, 11, 2472-2477
NG paper	298	280	N-RGO paper	5 mV	1 M H ₂ SO ₄	RSC Adv., 2014, 4, 51878-
			Three- electrode	5		51883

Porous NCs	2674	280	Titanium mesh Three- electrode	0.2 A g ⁻¹	1 M H ₂ SO ₄	Electrochim . Acta, 2015, 158, 229-236
HP NC spheres	568	278	- Three- electrode	0.1 A g ⁻¹	1 M H ₂ SO ₄	J. Colloid Interface Sci., 2015, 452, 54-61
Porous NCs/GC	1276	270	Graphite substrate Three- electrode	2 A g ⁻¹	1 M H ₂ SO ₄	J. Am. Chem. Soc., 2015, 137, 1572-1580
NC sheets	549.5	249	Glassy carbon Three- electrode	1 A g ⁻¹	6 М КОН	J. Mater. Chem. A, 2014, 2, 17297- 17301
Actived glucose- derived carbon/CN T hybrids	2021	239	Stainless steel mesh Two- electrode	0.2 A g ⁻¹	1 M H2SO4	ACS Appl. Mater. Interfaces, 2019, 11, 6066-6077
HP NCs	553	239	Carbon paper Two- electrode	0.5 A g ⁻¹	1 M H ₂ SO ₄	ACS Appl. Mater. Interfaces, 2014, 6, 7214-7222
Porous NCs	514	235	Nickel foil Two- electrode	1 A g ⁻¹	6 M KOH	J. Power Sources, 2010, 195, 1516-1521
Microporo us nitrogen- doped carbon ACOF1	1596	234	Glassy carbon Three- electrode	1 A g ⁻¹	6 M KOH	Chem. Eur. J., 2017, 23, 17504- 17510
Hollow NC shells	525	230	Nickel net Three- electrode	0.5 A g ⁻¹	5 М КОН	ACS Appl. Mater. Interfaces, 2013, 5,

						10280- 10287
Porous NC spheres	403	228	Nickel foam Three- electrode	1 A g ⁻¹	6 M KOH	Electrochim . Acta, 2015, 158, 166-174
NC film	2870	224.5	Glassy carbon Three- electrode	0.2 A g ⁻¹	6 M KOH	Adv. Energy Mater., 2012, 2, 431-437
Ordered mesoporo us NCs	320	216	Titanium mesh Three- electrode	0.1 A g ⁻¹	1 M H ₂ SO ₄	Electrochim . Acta, 2014, 148, 187-194
Crumpled NGs sheets	465	208	Stainless mesh Two- electrode	0.1 A g ⁻¹	1 M H ₂ SO ₄	Langmuir, 2014, 30, 9183-9189
NCNFs- 900	562.5	202	Nickel foam Three- electrode	1 A g ⁻¹	6 M KOH	Acs Nano, 2012, 6,7092- 7102
Ordered mesoporo us NCs	761	200	Nickel foam Three- electrode	1 A g ⁻¹	6 M KOH	Chem. Mater., 2014, 26, 6872-6877
NG sheets	-	194	Glassy carbon Three- electrode	5 mV s ⁻¹	1 M KCl	J. Mater. Chem. A, 2013, 1, 2904-2912
NG hydrogel	-	190.1	Platinum foil Two- electrode	10 A g ⁻	5 М КОН	Nano Energy, 2013, 2, 249-256
NC porous spheres	475.4	176	Glassy carbon	1 A g ⁻¹	1 M H ₂ SO ₄	Polymer, 2014, 55, 2817-2824

			Three-			
Porous NCs	2570	176	Stainless mesh Two- electrode	0.1 A g ⁻¹	1 M H ₂ SO ₄	J. Am. Chem. Soc., 2012, 134, 14846- 14857
NG sheets	-	170.1	Nickel foam Two- electrode	0.5 A g ⁻¹	5 М КОН	Carbon, 2013, 56, 218-223
NG sheets	-	161	Nickel foam Three- electrode	0.5 A g ⁻¹	6 М КОН	Electrochim . Acta, 2012, 85, 459-466
NG sheets	-	109.9	Nickel foam Three- electrode	1 A g ⁻¹	6 М КОН	Appl. Surf. Sci., 2012, 258, 3438- 3443
N, O, P ternary doped porous carbon material	359.67	93.5	Nickel foam Two- electrode	0.1 A g ⁻¹	2 М КОН	Chem. Commun., 2019, 55, 1486-1489

Matorials	SBET	вет V _P (сm ³ g ⁻¹)			Specific capacitance (F g ⁻¹)		
Waterials	(m² g⁻¹)	n ² g ⁻¹) Total Micro- Meso-		Meso-	at 1 A g ⁻¹	at 500 A g ⁻¹	
ONC-T0-700	116	0.32	0.03	0.29	279	86	
ONC-T0-850	157	0.22	0.05	0.17	38	3.5	
ONC-T1-700	3451	2.10	1.13	0.97	768	439	
ONC-T1-850	1518	1.10	0.46	0.64	1711	856	
VXC72R	223	0.43	0.11	0.32	71	30	
Super P	50.5	0.14	0.02	0.12	119	69	

Table S4. The properties of ONC-T0-700, ONC-T0-850, ONC-T1-700, ONC-T1-850, VXC72R and Super P.