Tin Nanoparticles Embedded in Carbon Buffer Layer as Preferential Nucleation Sites for Stable Sodium Metal Anodes

Huan Wang,[‡] Edward Matios,[‡] Chuanlong Wang,[‡] Jianmin Luo, Xuan Lu, Xiaofei Hu, Yiwen Zhang and Weiyang Li*

Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States. Email: weiyang.li@dartmouth.edu

[‡] These authors contributed equally to this work.

Fig. S1 (a) SEM image of tin (Sn) nanoparticles embedded in carbon network and (b) the corresponding EDS mapping of element Sn.

Fig. S2 Thermogravimetric analysis (TGA) curve of the as-prepared Sn@C composite in air at a heating rate of 5 °C min⁻¹.

Under the condition, the carbon is oxidized into gaseous CO_2 with tin oxide (SnO₂) as final product. In this case, the Sn content can be calculated according to the following equation:¹⁵

Fig. S3 SEM image of bare Sn nanoparticles on Cu foil.

Fig. S4 (a) Low-magnification and (b) high-magnification SEM images of pure carbon network without Sn nanoparticles.

Fig. S5 Coulombic efficiency of Na plating-stripping on pure carbon network without Sn nanoparticles at a current density of 2 mA cm⁻² and a capacity of 1 mAh cm⁻².

Fig. S6 Na plating curves at a current density of 2 mA cm⁻² on pure carbon matrix and Sn@C composite, respectively.

Fig. S7 Voltage profiles of Na plating-stripping at various cycles on (a) Sn@C composite; (b) bare Sn nanoparticle; (c) bare Cu foil; (d) pure carbon network at a current density of 2 mA cm⁻² and a capacity of 1 mAh cm⁻².

Fig. S8 Typical cyclic voltammetry (CV) curves (versus Na metal electrode) on bare Cu foil, bare Sn nanoparticles and Sn@C composite, respectively.

Fig. S9 Long-term voltage profiles of Na plating-stripping on different substrates at a current density and a capacity of (a) 2 mA cm⁻², 1 mAh cm⁻²; (b) 2 mA cm⁻², 3 mAh cm⁻²; (c) 2 mA cm⁻², 5 mAh cm⁻².

Fig. S10 Voltage profile of Na plating-stripping on pure carbon network without Sn nanoparticles at a current density of 2 mA cm⁻² and a capacity of 1 mAh cm⁻².

Fig. S11 (a) Low-magnification and (b) high-magnification SEM images of Na cycling at a current density 2 mA cm⁻² and a capacity of 1 mAh cm⁻² after the 50th cycle of deposition on pure carbon matrix.

Fig. S12 SEM image of commercial Na₂S cathode after grinding.

Fig. S13 Cycling performance and Coulombic efficiency of Na-S full cell using commercial Na₂S powder as cathode and Sn/Na as anode at a current rate of 1 A g^{-1} in the potential range of 1-2.6 V.

Fig. S14 Typical cyclic voltammetry (CV) curves of Na-S full cells using commercial Na₂S cathode and three kinds of anodes (Sn@C/Na, Cu/Na and Sn/Na), respectively.

NO.	Anode material	Cathode material	Current rate (A g ⁻¹)	Initial Capacity	Capacity after 100 cycles	Retention
This work	Sn@C/Na	Commercial Na ₂ S powder	1	643.7	582.3	~90.5%
1	Na metal	Nano-copper-assisted immobilizing S in high- surface-area mesoporous carbon	0.05	~700	~610	~87.1%
2	Na metal	Carbon nanotubes/Na ₂ S	0.6	~700	~380	~54.3%
3	Na metal	Activate carbon nanofibers/Na ₂ S ₆	0.3	~800	~500	~62.5%
4	Na metal	Metal organic framework-derived microporous carbon polyhedron/infusing S	0.8	860	600	~69.8%
5	Na metal	Fe nanoclusters wreathed on hollow carbon nanospheres/infusing S	0.1	1023	~500	~48.9%
6	Na metal	N-doped nanoporous carbon/infusing S	0.3	~900	~750	~83.3%
7	Na metal	Porous carbon/BaTiO $_3$ nanofibers/infusing S	1	~952	~450	~47.3%
8	Na metal	Multiporous carbon fibers/infusing S	1.6	~1450	~850	~58.6%
9	Na metal	Cobalt nanoparticles-decorated hollow carbon/infusing S	0.1	~1081	~600	~55.6%
10	Na metal	Sugar-derived carbon spheres/infusing S	1.6	~420	~310	~73.8%
11	Na metal	Carbonized polyacrylonitrile matrix/infusing S	1.6	~350	~220	~62.9%
12	Hard carbon after tailed sodiation	Porous Ketjenblack carbon/infusing S	0.167	~1000	~580	~58%
13	Passivated Na metal	Hollow Na ₂ S nanospheres embedded in a hierarchical and spongy carbon matrix	2.1	~790	~400	~50.6%
14	Na metal	Activate carbon nanofibers/Na ₂ S	0.3	580	500	~86.2%

Table S1. Comparison of cycling performance of room-temperature Na-S batteries in this work with reported literatures (based on S mass).¹⁻¹⁴

References

1. S. Zheng, P. Han, Z. Han, P. Li, H. Zhang and J. Yang. Adv. Energy Mater. 2014, 4, 1400226.

- 2. X. Yu and A. Manthiram. Chem. Eur. J. 2015, 21, 4233-4237.
- 3. X. Yu and A. Manthiram. Adv. Energy Mater. 2015, 5, 1500350.

4. S. Wei, S. Xu, A. Agrawral, S. Choudhury, Y. Lu, Z. Tu, L. Ma and L. A. Archer. *Nat. Commun.* 2016, 7, 11722.

5. B-W. Zhang, T. Sheng, Y-X. Wang, S. Chou, K. Davey, S-X. Dou and S-Z. Qiao, *Angew. Chem. Int. Ed.* 2019, **58**, 1484-1488.

6. Y-M. Chen, W. Liang, S. Li, F. Zou, S. M. Bhaway, Z. Qiang, M. Gao, B. D. Vogt and Y. Zhu. *J. Mater. Chem. A*, 2016, **4**, 12471-12478.

7. D. Ma, Y. Li, J. Yang, H. Mi, S. Luo, L. Deng, C. Yan, M. Rauf, P. Zhang, X. Sun, X. Ren, J. Li and H. Zhang. *Adv. Funct. Mater.* 2018, **28**, 1705537.

8. X. Xu, D. Zhou, X. Qin, K. Lin, F. Kang, B. Li, D. Shanmukaraj, T. Rogo, M. Armand and G. Wang. *Nat. Commun.* 2018, **9**, 3870.

B-W. Zhang, T. Sheng, Y-D. Liu, Y-X. Wang, L. Zhang, W-H. Lai, L. Wang, J. Yang, Q-F. Gu, S-L. Chou, H-K. Liu and S-X. Dou, *Nat. Commun.* 2018, 9, 4082.

10. R. Carter, L. Oakes, A. Douglas, N. Muralidharan, A. P. Cohn and C. L. Pint. *Nano Lett.* 2017, **17**, 1863-1869.

11. T. H. Hwang, D. S. Jung, J-S. Kim, B. G. Kim and J. W. Choi. *Nano Lett.* 2013, **13**, 4532-4538.

12. M. Kohl, F. Borrmann, H. Althues and S. Kaskel. Adv. Energy Mater. 2016, 6, 1502185.

13. C. Wang, H. Wang, X. Hu, E. Matios, J. Luo, Y. Zhang, X. Lu and W. Li, *Adv. Energy Mater.* 2019, **9**, 1803251.

14. X. Yu and A. Manthiram. Chem. Mater. 2016, 28, 896-905.

15. Z. Zhu, S. Wang, J. Du, Q. Jin, T. Zhang, F. Cheng and J. Chen, *Nano Lett.* 2014, 14, 153-157