Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting information

Fabrication of remote controllable devices with multistage responsiveness

based on NIR light-induced shape memory ionomer containing various

bridge ions

Yongkang Bai^a, Jiwen Zhang^a, Didi Wen^b, Peiwei Gong^c, Jiamei Liu^d and Xin Chen ^{a*}

^a School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China

^b Department of Radiology, Xijing Hospital, Forth Military Medical University, Xi'an, Shaanxi 710032, PR China

^c The Key Laboratory of Life-Organic Analysis, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China

^d Instrument Analysis Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China

Corresponding author: Xin Chen, Chenx2015@xjtu.edu.cn

Figure S1 FTIR spectra of PVA-PAA and PVA-PAA-Fe-1, -3 and -5.

Figure S2 EDS spectra PVA-PAA and PVA-PAA-Fe-1, -3 and -5.

Figure S3 DMA curves of PVA-PAA and PVA-PAA-Fe-1, -3 and -5.

Figure S4 FTIR spectra of PVA-PAA-Fe at different temperature

Tuble STT hysical properties and right induced shape memory property								
Sample	Q(%)	T _g (°C)	$R_{f}(\%)$	R _r (%)	Ion content			
					a(%)			
PVA-PAA	177.5±26.2	59.8	/	/	/			
PVA-PAA-Fe-1	114.0±13.3	63.3	94.2±1.9	93.5±1.2	1.3			
PVA-PAA-Fe-3	72.3±7.7	65.7	93.5±0.5	94.5±1.9	3.7			
PVA-PAA-Fe-5	70.0 ± 9.5	64.6	95.7±0.2	94.8±0.4	4.3			
PVA-PAA-Cu	144.9 ± 16.8	60.0	95.3±0.5	94.6±1.1	5.5			
PVA-PAA-Co	177.7±16.3	59.9	96.1±0.6	93.0±1.1	3.2			

Table S1 Physical properties and light-induced shape memory property

^a Ion content is calculated from the residual mass of metallic oxide from TGA curves.

Material	Tensile	Elongation	R _f (%)	R _r (%)	stimulus
	strength (MPa)	at break(%)			
Polyurethane ionomer ¹	39.5	/	95	75	heat
Polyurethane ionomer ²	26.7	920	93	82	heat
Poly(oxyethylene-b-butylene	/	/	97.4	78.3	heat
adipate) ionomer ³					
Royalene 521 ⁴	1.4	75	81.5	89.7	heat
Surlyn 9520 ⁵	24.9	702	99	88	heat
Sulfonated poly(ether ether	40	45	96	100	heat
ketone)/ sodium oleate ⁶					
Epoxidized natural rubber ionomer ⁷	12	250	77.2	98.4	heat
Surlyn 8940 ⁸	33	440	84.9	100	heat
Surlyn 9520/ zinc stearate9	13.9	9.4	100	98	heat
poly(styrene-b-butadiene-b-styrene)	14.2	100	85.9	97	heat
ionomer ¹⁰					
PVA-PAA ionomer (this study)	56.1	107	96	95.	Heat/NIR

Table S2 Comparison of some shape memory ionomers with PVA-PAA ionomer

Reference

- 1. B. K. Kim, S. Y. Lee, J. S. Lee, S. H. Baek, Y. J. Choi, J. O. Lee and M. Xu, *Polymer*, 1998, **39**, 2803-2808.
- 2. Q. Meng, J. Hu, B. Liu and Y. Zhu, *Journal of Biomaterials Science, Polymer Edition*, 2009, **20**, 199-218.
- 3. C. I. Lee, S. Y. Hwang, E. S. Yoo and S. S. Im, *Polym Degrad Stabil*, 2011, **96**, 190-196.
- 4. J. Dong and R. A. Weiss, *Macromolecules*, 2011, 44, 8871-8879.
- 5. R. Dolog and R. A. Weiss, *Macromolecules*, 2013, **46**, 7845-7852.
- 6. Y. Shi, M. Yoonessi and R. A. Weiss, *Macromolecules*, 2013, 46, 4160-4167.
- 7. Y. Zhang, H. Li, C. Li, X. Chen and A. Lesser, *Polymer Engineering & Science*, 2019, **59**, 367-374.
- 8. L. Lu and G. Li, ACS Appl Mater Inter, 2016, 8, 14812-14823.
- 9. R. Dolog and R. A. Weiss, *Polymer*, 2017, **128**, 128-134.
- 10. M. Yan, L. Cao, C. Xu and Y. Chen, *Macromolecules*, 2019, **52**, 4329-4340.