Electronic Supplementary Information

Phosphonium zwitterions for lighter and chemically-robust MOFs: Highly reversible H₂S capture and solvent-triggered release

Joseph E. Reynolds III,^{*a*} Alisha M. Bohnsack,^{*a*‡} David J. Kristek,^{*a*} Aída Gutiérrez-Alejandre,^{*b*} Samuel G. Dunning,^{*a*} R. Eric Sikma,^{*a*} Nolan W. Waggoner,^{*a*§} Ilich A. Ibarra,^{*c*,*} and Simon M. Humphrey^{*a*,*}

^aDepartment of Chemistry, The University of Texas at Austin, 100 East 24th Street, Stop A1590, Austin, Texas 78712, United States

^bUnidad de Investigación en Catálisis, Depto. de Ingeniería Química, Facultad de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Covoacán, 04510, Ciudad de México, Mexico.

^cLaboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico

*E-mail: <u>smh@cm.utexas.edu</u>

*E-mail: <u>argel@unam.mx</u>

Contents

Experimental	4
General Comments	4
General Instrumentation	4
Synthetic Details	6
Synthesis of <i>tris</i> (4-bromophenyl)phosphine (1).	6
Figure S1. ¹ H NMR spectrum of <i>tris</i> (4-bromophenyl)phosphine	7
Figure S2. ³¹ P NMR spectrum of <i>tris</i> (4-bromophenyl)phosphine	8
Figure S3. ¹³ C NMR spectrum of <i>tris</i> (4-bromophenyl)phosphine	9
Figure S4. Infrared spectrum of <i>tris</i> (4-bromophenyl)phosphine.	10
Synthesis of <i>tris</i> (4-carboxyphenyl)phosphine (2)	11
Figure S5. ¹ H NMR spectrum of <i>tris</i> (4-carboxyphenyl)phosphine	12
Figure S6. ³¹ P NMR spectrum of <i>tris</i> (4-carboxyphenyl)phosphine	13
Figure S7. ¹³ C NMR spectrum of <i>tris</i> (4-carboxyphenyl)phosphine	14
Figure S8. Infrared spectrum of <i>tris</i> (4-carboxyphenyl)phosphine	15
Synthesis of <i>tetrakis</i> (4-carboxyphenyl)phosphonium (tpcppH ₃ ⁺ ,iPCM-1)	16
Figure S9. ¹ H NMR spectrum of <i>tetrakis</i> (4-carboxyphenyl)phosphonium	17
Figure S10. ³¹ P NMR spectrum of <i>tetrakis</i> (4-carboxyphenyl)phosphonium	
Figure S11. ¹³ C NMR spectrum of <i>tetrakis</i> (4-carboxyphenyl)phosphonium	19
Figure S12. Infrared spectrum of <i>tetrakis</i> (4-carboxyphenyl)phosphonium (iPCM-1)	20
Figure S13. Thermogravimetric analysis (TGA) profiles of iPCM-1	21
Figure S14. N ₂ sorption isotherm of iPCM-1 acetone exchanged and activated at 100 °C and collected at 77 K.	22
Synthesis of In-PCM-66 [In(tpcpp)].	23
Figure S15. Infrared spectrum of PCM-66.	24
Figure S16. Thermogravimetric analysis (TGA) profiles of PCM-66.	25
Figure S17. PXRD patterns of PCM-66	
Figure S18. Sorption isotherms of PCM-66 activated at 100 °C.	27
Synthesis of Mg-PCM-75.	
Figure S19. Infrared spectrum of PCM-75.	29
Figure S20. (A) View along the <i>a</i> -axis of PCM-75; (B) view along the <i>b</i> -axis of PCM-75; (C) along the <i>c</i> -axis of PCM-75; (D) view along the <i>a</i> , <i>b</i> -bisector of PCM-75.	view 30
Figure S21. Thermogravimetric analysis (TGA) profiles of PCM-75.	31
Figure S22. PXRD patterns of PCM-75 as synthesized and exchanged	
Figure S23. Sorption isotherms of Mg-PCM-75 activated at 75 °C.	

Figure S24. Sorption isotherms of Mg-PCM-75 activated at 150 °C
Figure S25. Sorption isotherms of Mg-PCM-75 activated at 250 °C
Figure S26. A graphical representation of the surface area for PCM-75 based on different probe gasses and activation conditions
Figure S27. A graphical representation of the volumetric capacity for PCM-75 based on different probe gasses and activation conditions
Table S1. Tabulated gas sorption data for PCM-75 38
Figure S28. Water sorption isotherm of PCM-75 collected at 20 °C
Figure S29. Fitting of the Clausius–Clapeyron equation to calculate the isosteric heat of adsorption (ΔH_{ads}) for water
Figure S30. PXRD patterns of PCM-75 after exposure to H ₂ S (top) and resolvated41
Figure S31. In situ PXRD patterns of PCM-75 under an atmosphere of H ₂ S as a function of time42
Figure S32. H ₂ S breakthrough experiments for PCM-7544
Table S2. H ₂ S breakthrough data for Mg-PCM-7545
Figure S33. H ₂ S adsorption breakthrough curves at 30 °C for MOF-74(Zn) and HKUST-1. Measurements using 6 %vol. H ₂ S/N ₂ feed concentration and a 30 cm ³ min ⁻¹ flow rate
Table S3. H ₂ S adsorption capacity for some related MOFs. Breakthrough measurements using 6 %vol. H ₂ S/N ₂ feed concentration and a 30 cm ³ min ⁻¹ flow rate
Figure S34. Comparison of PXRD data for iPCM-1 upon desolvation and re-immersion in different solvents
References

Experimental

General Comments

All syntheses were carried out under a N₂ atmosphere using standard Schleck line techniques. All glassware was oven dried before use (90 °C) for at least 18 hours or flame dried. Phosphorous trichloride (PCl₃) was purchased from Sigma Aldrich and was then purified through distillation. *N*-butyllithuim (*n*-BuLi) (2.48 M, hexanes) was purchased from Acros and titrated in house. Pd(OAc)₂ was purchased from Oakwood Products. 1,4-dibromobenzene was purchased from Chem-Impex International Inc. 4-iodobenzoic acid was purchased from Matrix Scientific. All organic solvents were purchased from Fischer Scientific. Tetrahydrofuran (THF) was prepared by distillation (Na/benzophenone) and dried over molecular sieves (4 Å). All other solvents were deoxygenated *via* bubbling N₂ gas for no less than fifteen minutes and dried over sieves.

General Instrumentation

All analyses were performed in house. All nuclear magnetic resonance (NMR) shifts were software standardized and are expressed as δ in parts per million (ppm). Coupling constants (J) are reported in Hz and apparent peak multiplicities are noted. ¹H, ¹³C, and ³¹P NMR analysis were performed on a Varian NMRS 400 MHz NMR spectrometer, Varian NMRS 600 MHz NMR spectrometer, and a Bruker Prodigy 500 MHz NMR spectrometer. High resolution mass spectrometry was performed on an Agilent Technologies 6530 Accurate Mass QTofLC/MS (ESI). Infrared spectroscopy (IR) was performed on a Thermo Scientific iS50 FT-IR spectrometer with an attached ATR apparatus. For Single Crystal X-Ray Crystallography (SCXRD), suitable crystals were mounted on a thin glass fiber using perfluoropolyether oil, which was frozen in situ by a nitrogen gas cryostream flow. Data collection was performed on a Rigaku Saturn CCD diffractometer using MoK α (0.709 Å) equipped with an Oxford 600 series Cryostream (iPCM-1). All other structures were collected on an Agilent Super Nova diffractometer equipped with an AtlasS2 CCD, and Oxford 700 low-temperature attachment, using CuK α radiation (1.7902 Å). Powder X-ray Diffraction (PXRD) were recorded for iPCM-1 and In-PCM-66 on a Stoe Stadi-P diffractometer, with a

Debye-Scherrer geometry detector using Co K α radiation (1.7902 Å). Data was collected in the range 5.0– 40.0° 2θ using multiple scans, which were subsequently averaged. Powder X-ray Diffraction (PXRD) for Mg-PCM-75 was performed on a Rigaku R-Axis Spider diffractometer using CuKα (1.5405 Å) radiation operating at 40 kV and 40 mA. X-ray spectra were collected using a sample rotation speed of 15°/s with data collected in the range 5-40° 20. Simulated PXRD was generated using single crystal reflection data via SimPowPatt facility in PLATON. Thermogravimetric analyses (TGA) were collected using a TA Instruments Q50 system using high purity N₂ carrier gas. in the range of 25-800 °C. A ramp rate of 3.50 °C s⁻¹ was applied between 25–500 °C and 5.00 °C s⁻¹ between 500–800 °C. Elemental microanalyses were performed by Midwest Microlab LLC (Indianapolis). Quantachrome Autosorb-1 system at 77 K (N₂, H₂, O₂) or 196 K (CO₂, CH₄) and all gases (99.995+%) were purchased from Praxair. Gas sorption studies on Mg-PCM-75 were carried out using a volumetric sorption analyzer (Micromeritics 3Flex 3500). Gas adsorption-desorption isotherms for these samples were collected at 77 K (N₂, H₂, O₂) or 196 K (CO₂, CH₄) after dehydration under vacuum (< 10-5 Torr) at 200 °C for 12 hours. The H₂S determination was made using a HP 5890 GC, by continuous injections of the system exhaust, of each injection we obtained a chromatogram. From the corresponding chromatogram we integrate the H₂S signal to obtain the abundance. Knowing the H₂S concentration from the feed, we can calculate the H₂S concentration in each one of the injections, as the saturation concentration is the original feed concentration. From this data we can obtain the corresponding breakthrough plots, C/C_f vs time. In this system it is necessary carry out a Blank, because the system can adsorb H₂S by itself. H₂O vapor isotherms were recorded by a dynamic method in a DVS Advantage 1 instrument from Surface Measurement System (mass sensitivity: 0.1 µg; RH accuracy: 0.5% RH, vapor pressure accuracy: 0.7% P/P₀. PCM-75 samples were activated at 200 °C for 1 hour under flowing N₂ prior to H₂O adsorption experiments.

Synthetic Details

Synthesis of *tris*(4-bromophenyl)phosphine (1).

In a 500 mL 3-neck round bottom flask, 1,4-dibromobenzene (20.0 g, 84.7 mmol) was dissolved in dry THF (~ 250 mL). The solution was cooled down to -78 °C (acetone/dry ice bath). To the cooled solution, *n*-BuLi (34.2 mL of 2.48 M in hexanes, 84.7 mmol) was added dropwise *via* addition funnel over 30 minutes giving a white slurry. After stirring at -78 °C for an additional 1.5 hours, PCl₃ (2.47 mL, 28.2 mmol) was diluted in THF (10 mL) and added dropwise over 30 minutes forming a light-yellow solution. The light-yellow solution was then allowed to stir overnight to slowly acclimate to room temperature. Degassed D.I. water (100 mL) was added to the reaction flask slowly. The product was then phase extracted with dichloromethane (DCM), and the aqueous layer was washed with additional DCM (3 x 50 mL). The organic layers were combined, washed with brine, dried over MgSO₄, filtered and dry loaded onto silica gel (18.0 g). The crude product was then purified using column chromatography (eluted with hexanes on silica gel) affording 9.77 g (69 %) of a colorless crystalline solid. ¹H NMR (CDCl₃, 500.18 MHz) δ = 7.48 (dd, 6H), 7.13 (dt, 6H); ¹³C{¹H} NMR (CDCl₃, 125.78 MHz) δ = 135.34 (d), 135.13 (s), 132.07 (d), 124.10 (s); ³¹P{¹H} NMR (CDCl₃, 202.47 MHz) δ = -8.60. FT-IR (ATR): *v*_{max} (cm⁻¹) = 1920 (vw), 1567 (w), 1472 (m), 1381 (m), 1298 (w), 1177 (w), 1093 (w), 1065 (s), 1006 (vs), 947 (vw), 815 (s), 806 (s), 722 (s), 627 (vw), 565 (m), 506 (vs), 471 (m).

Figure S1. ¹H NMR spectrum of *tris*(4-bromophenyl)phosphine.

Figure S2. ³¹P NMR spectrum of *tris*(4-bromophenyl)phosphine.

Figure S3. ¹³C NMR spectrum of *tris*(4-bromophenyl)phosphine.

Figure S4. Infrared spectrum of *tris*(4-bromophenyl)phosphine.

Synthesis of *tris*(4-carboxyphenyl)phosphine (2).

In a 500 mL 3-neck round bottom flask, *tris*(4-bromophenyl)phosphine (1) (2.50 g, 5.01 mmol) was dissolved in dry THF (250 mL). The solution was cooled down to -78 °C (acetone/dry ice bath). To the cooled solution, *n*-BuLi (6.67 mL of 2.48 M in hexanes, 16.5 mmol) was added dropwise *via* syringe over 30 minutes giving an orange/red suspension. After stirring at -78 °C for an additional 2 hours, excess crushed CO₂(s) was added to the lithiated phosphine resulting in a white suspension. The suspension was then allowed to stir overnight to slowly acclimate to room temperature. The lithium salt was then collected by centrifugation and dried under vacuum. The lithium salt was further dissolved in degassed H₂O (30 mL) and cooled in an ice bath. HCl (2 M) was added dropwise until the pH of the suspension was $\sim 2 - 3$. The white precipitate was collected by centrifuge and the pellet was washed with addition amounts of H₂O. The pellet was dried under vacuum affording 1.67 g (84 %) of a white solid. ¹H NMR (DMSO-*d*₆, 500.18 MHz) $\delta = 13.12$ (s), 7.97 (d, 6H), 7.38 (t, 6H); ¹³C {¹H} NMR (DMSO-*d*₆, 202.47 MHz) $\delta = -6.38$. FT-IR (ATR): ν_{max} (cm⁻¹) = 3375 (m, br), 2538 (w, br), 1685 (s), 1594 (m), 1557 (w), 1415 (m), 1393 (m), 1311 (w), 1285 (m, br), 1181 (m), 1128 (w), 1085 (w), 1016 (m), 908 (w, br), 850 (m), 807 (w), 759 (m), 693 (m), 513 (m), br), 471 (w).

Figure S5. ¹H NMR spectrum of *tris*(4-carboxyphenyl)phosphine.

Figure S6. ³¹P NMR spectrum of *tris*(4-carboxyphenyl)phosphine.

Figure S7. ¹³C NMR spectrum of *tris*(4-carboxyphenyl)phosphine.

Figure S8. Infrared spectrum of *tris*(4-carboxyphenyl)phosphine.

Synthesis of *tetrakis*(4-carboxyphenyl)phosphonium (tpcppH₃⁺,iPCM-1).

Tris(4-bromophenyl)phosphine (0.20 g, 0.51 mmol), 4-iodobenzoic acid (0.14 g, 0.56 mmol), and palladium (II) acetate (6 mg, 0.025 mmol) were dissolved in degassed DMF (20 mL) in a 50 mL round bottom flask with a side arm. The resulting yellow solution was stirred under nitrogen at room temperature for 12 hours. The solution was heated to 160 °C until the solution turned a deep red/brown color (4 - 8 hours). The reaction was then cooled to room temperature and reduced (~30 % original volume) and added to ice water (~75 mL) resulting in the formation of a precipitate. The solid was collected and washed with acetone (3 x 15 mL) and dried to afford 0.15 g (57 %) of a beige powder. Crystallizes when concentrated from hot DMF. ¹H NMR (DMSO-*d*₆, 100 °C, 599.68 MHz) δ = 8.24 (dd, 8H), 7.85 (dd, 8H); ¹³C (¹H) NMR (DMSO-*d*₆, 100 °C, 150.81 MHz) δ = 165.44 (d), 139.86 (s), 134.19 (d), 129.99 (d), 119.52 (d); ³¹P (¹H) NMR (DMSO-*d*₆, 161.92 MHz) δ = 22.47. FT-IR (ATR): *v*_{max} (cm⁻¹) = 3449 (br), 3041 (w), 2800 (w), 2607 (w), 2489 (w), 1702 (s), 1600 (w), 1561 (w), 1545 (w), 1494 (w), 1392 (s), 1313 (w), 1244 (m), 1182 (w), 1128 (w), 1097 (s), 1012 (m), 859 (m), 813 (w), 763 (m), 709 (s), 690 (w), 632 (m), 567 (s), 512 (w), 476 (w), 384 (s), 314 (w), 271 (s), 177 (w), 138 (w), 122 (m). HRMS (ESI+) m/z: [M + H]⁺ Exact mass calculated for [C₂₈H₁₉O₈P]⁺: 515.0890; Found: 515.0899. Elem. Anal. Calcd. for activated iPCM-1, C₂₈H₁₉O₈P·H₂O requires: C 63.16, H 3.98. Found: C 62.78, H 3.59.

Figure S9. ¹H NMR spectrum of *tetrakis*(4-carboxyphenyl)phosphonium.

Figure S10. ³¹P NMR spectrum of *tetrakis*(4-carboxyphenyl)phosphonium.

Figure S11. ¹³C NMR spectrum of *tetrakis*(4-carboxyphenyl)phosphonium.

Figure S12. Infrared spectrum of *tetrakis*(4-carboxyphenyl)phosphonium (iPCM-1).

Figure S13. Thermogravimetric analysis (TGA) profiles of iPCM-1.

Figure S14. N₂ sorption isotherm of iPCM-1 acetone exchanged and activated at 100 °C and collected at 77 K.

Synthesis of In-PCM-66 [In(tpcpp)].

Tetrakis(4-carboxyphenyl)phosphonium (26 mg, 0.05 mmol) and In(NO₃)₃ (15 mg, 0.05 mmol) were suspended in 10 mL of H₂O inside of a 23 cm³ Teflon-lined autoclave (Parr Corp.), heated at 160 °C for 18 hours, and cooled to room temperature. Once cooled, the crystallites were purified by 3 cycles of sonication and decanting the supernatant affording 7 mg (17% crystalline yield) of a beige microcrystalline powder. FT-IR (ATR): v_{max} (cm⁻¹) = 1729 (w), 1596 (w), 1497 (vw), 1393 (m), 1251 (w), 1101 (m), 1015 (m), 871 (m), 770 (w), 745 (s), 693 (s), 634 (w), 571 (w), 507 (w), 745 (w), 410 (m). Elem. Anal. Calcd. for activated In-PCM-66, C₂₈H₁₆O₈PIn requires: C 53.53, H 2.89. Found: C 53.18, H 2.87.

Figure S15. Infrared spectrum of PCM-66.

Figure S16. Thermogravimetric analysis (TGA) profiles of PCM-66.

Figure S17. PXRD patterns of PCM-66.

Figure S18. Sorption isotherms of PCM-66 activated at 100 °C.

Synthesis of Mg-PCM-75.

Tetrakis(4-carboxyphenyl)phosphonium (10 mg, 0.02 mmol) and Mg(NO₃)₂ · 6 H₂O (15 mg, 0.06 mmol) were combined in a 20 mL scintillation vial with 5 mL of DMF: MeOH: H₂O (5:2:1, v:v). The vial was placed inside an oven at 85 °C for 12 hours. The crystalline material was washed with fresh solvent and filtered affording 8 mg (53% crystalline yield) of colorless rod-like prisms. FT-IR (ATR): v_{max} (cm⁻¹) = 3207 (m, br), 1644 (w), 1588 (s), 1536 (s), 1375 (vs), 1097 (s), 1000 (w), 766 (m), 721 (m), 684 (w), 565 (m), 472 (w). Elem. Anal. Calc. for [Mg₃(tpcpp)₂(H₂O)₁₂] C₅₆H₅₆Mg₃O₂₈P₂ requires: C 51.27, H 4.30, N 0.00. Found: C 51.10, H 3.96, N 0.00. Elem. Anal. found post H₂S C 46.99, H 4.24, N 0.87, S 0.79.

Figure S19. Infrared spectrum of PCM-75.

Figure S20. (A) View along the *a*-axis of PCM-75; (B) view along the *b*-axis of PCM-75; (C) view along the *c*-axis of PCM-75; (D) view along the *a*,*b*-bisector of PCM-75.

Figure S21. Thermogravimetric analysis (TGA) profiles of PCM-75.

Figure S22. PXRD patterns of PCM-75 as synthesized and exchanged.

Figure S23. Sorption isotherms of Mg-PCM-75 activated at 75 °C.

Figure S24. Sorption isotherms of Mg-PCM-75 activated at 150 $^{\circ}\mathrm{C}.$

Figure S25. Sorption isotherms of Mg-PCM-75 activated at 250 °C.

Figure S26. A graphical representation of the surface area for PCM-75 based on different probe gasses and activation conditions.

Figure S27. A graphical representation of the volumetric capacity for PCM-75 based on different probe gasses and activation conditions.

Activation Temperature (°C)	75	150	200	250
$N_2 SA_{BET} (m^2 g^{-1})/Capacity (cm^3 g^{-1})$	296 / 116.3	567 /208.6	661 / 241.7	592 / 211.1
N_2 Pore Volume (cm ³ g ⁻¹)	0.18	0.32	0.37	0.33
$CO_2 SA_{BET} (m^2 g^{-1})/Capacity (cm^3 g^{-1})$	410 /123.4	663 / 154.4	800 / 233.7	684 /187.2
CO ₂ Pore Volume ($cm^3 g^{-1}$)	0.23	0.29	0.44	0.35
$O_2 SA_{BET} (m^2 g^{-1})/Capacity (cm^3 g^{-1})$	403 / 146.4	717 / 252.0	808 / 290.3	698 / 250.5
$H_2 SA_{BET} (m^2 g^{-1})/Capacity (cm^3 g^{-1})$	163 / 98.5	252 / 159.1	283 / 171.0	238 / 143.4
CH ₄ SA _{BET} $(m^2 g^{-1})/Capacity (cm^3 g^{-1})$	106 / 51.1	233 / 100.7	297 / 122.0	161 / 78.5

Table S1. Tabulated gas sorption data for PCM-75

Figure S28. Water sorption isotherm of PCM-75 collected at 20 °C.

Figure S29. Fitting of the Clausius–Clapeyron equation to calculate the isosteric heat of adsorption (ΔH_{ads}) for water.

Figure S30. PXRD patterns of PCM-75 after exposure to H_2S (top) and resolvated.

Figure S31. In situ PXRD patterns of PCM-75 under an atmosphere of H₂S as a function of time.

H₂S Adsorption Experimental

Dynamic breakthrough experiments were carried out in a home-made system (Scheme S1). The adsorption column was made from quartz glass with an internal diameter of 7 mm, with a porous glass bed to hold the sample. The adsorption column was covered with a temperature-controlled heating jacket. The column downstream was monitored with a gas chromatograph (HP-5890) equipped with a HP-PLOT 1 column and a thermal conductivity detector (TCD). The GC is equipped with an automatic injection valve.

Samples were activated *in situ* at 200 °C for 12 hours with a constant flow of dry N₂ and then slowly cooled to 30 °C. Then the H₂S concentration was adjusted with a mass flow controller fed with two lines: dry N₂ and H₂S/N₂ 15:85 v/v mixture (Scheme S1). The breakthrough experiments were carried out at 30 °C and the downstream flow was analysed with a GC, the complete breakthrough of H₂S was indicated by the downstream gas concentration reaching the initial feed.

Scheme S1. Representation of breakthrough system. The H₂S/N₂ mixture passed through a mass flow controller (MFC) which feeds the adsorption column, and a gas chromatograph with a thermal conductivity detector (GC TCD) was used to measure the H₂S downstream.

The H₂S adsorption capacity was calculated using Eq. S11.1, where V_{H2S} represents the H₂S volumetric capacity (cm³ g⁻¹), '*m*' the adsorbent mass (g), '*F*' the input flow rate (cm³ min⁻¹), '*C_f*' and '*C_t*' the influent and downstream H₂S concentrations respectively (% vol), and '*t*' the time (min).

$$V_{H_2S} = \frac{F}{C_f \cdot m} \cdot \int_0^t (C_f - C_t) dt$$
 Eq. S1.1

As mentioned before, the adsorption column has a porous glass bed thus, a blank run before each experiment was measured to eliminate the adsorption contribution of the column. In Fig. S32 the blue circles represent the adsorption of the column, and the purple circles represent the Mg-PCM-75 adsorption. Then the Mg-PCM-75 corrected volumetric capacity ' $V_{H2S,corr}$ ' was estimated using Eq. S1.2.

$$V_{H_2S,corr} = V_{H_2S,blank} - V_{H_2S,sample}$$
 Eq. S1.2

The H₂S adsorption capacity is often reported as ' q_{H2S} ' (mol g⁻¹), this value was roughly estimated with the volumetric adsorption capacity ' $V_{H2S,corr}$ ' (cm³ g⁻¹) and the ideal gas law Eq. S1.3. Where 'p' is the system pressure (77.3 kPa), 'T' the measurement temperature (303 K), and 'R' the ideal gas constant (8314.4598 cm³ kPa K⁻¹ mol⁻¹).

Figure S32. H₂S breakthrough experiments for PCM-75.

Mg-PCM-75 area	44.76 %vol*min		
Blank area	50.03 %vol*min		
Area difference	5.27 %vol*min		
H ₂ S Vol ads	10.54 mL		
H ₂ S ads	0.4308111936 mmol		
Mg-PCM-75 mass	54.68 mg		
H ₂ S ads	7.87 mmol/g		

Table S2. H_2S breakthrough data for Mg-PCM-75

The breakthrough system was tested with other reported MOF materials (Fig. S33): MOF74(Zn) and HKUST-1.[1] 50 mg of each sample were activated in situ at 180 °C for 1 hour with a constant flow of dry N_2 and then slowly cooled to 30 °C. Then the H₂S desired concentration was adjusted 6 %vol. Adsorption capacity at 6 %vol of H₂S concentration for the reported materials are correspondent with the reported values (Table S3).

Figure S33. H₂S adsorption breakthrough curves at 30 °C for MOF-74(Zn) and HKUST-1. Measurements using 6 %vol. H₂S/N₂ feed concentration and a 30 cm³ min⁻¹ flow rate.

Table S3. H₂S adsorption capacity for some related MOFs. Breakthrough measurements using 6 %vol. H₂S/N₂ feed concentration and a 30 cm³ min⁻¹ flow rate.

Matarial	H ₂ S uptake (mmol g ⁻¹)		
wrateriai	Our System[2]	Reported[1]	
Mg-CUK-1	1.41	-	
MOF-74(Zn)	1.72	1.64	
HKUST-1	1.04	1.1	

Figure S34. Comparison of PXRD data for iPCM-1 upon desolvation and re-immersion in different solvents.

References

[1] J. Liu, Y. Wei, P. Li, Y. Zhao and R. Zou, J. Phys. Chem. C, 2017, 121, 13249.

[2] E. Sánchez-González, P. G. M. Mileo, M. Sagastuy-Breña, J. Raziel Álvarez, J. E. Reynolds, III, A. Villarreal, A. Gutiérrez-Alejandre, J. Ramírez, J. Balmaseda, E. González-Zamora, G. Maurin, S. M. Humphrey and I. A. Ibarra, *J. Mater. Chem. A*, 2018, **6**, 16900.