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Experiment 

Preparation of NENU-5:

Solution A: The Cu-based NENU-5 POMOFs were used as the precursor for the 

synthesis of MoN-CN nano-octahedrons. The MENU-5 was synthesized by method as 

described as previous report [1]. Specifically, 0.7355 g of L-glutamic acid, 3 g of 

phosphomolybdic acid hydrate and 2 g of copper acetate monohydrate are dissolved 

into 500 mL deionized water (DI) and stirred for 0.5 h. Solution B: 1.4 g of 1, 3, 5-

benzenetricarboxylic acid was dissolved in 400 mL of ethanol. Solution B was 

introduced into solution A under stirring under room temperature under continuous 

string for 14 h. The green precipitate was rinsed with DI, and finally dried at 70 °C 

overnight. 

Preparation of Porous MoO2-C Nano-Octahedrons: 

The green NENU-5 nano-octahedrons were annealed at 650 °C for 3 h under an Ar 

atmosphere with a heating ramp of 2 °C min−1. The as-obtained was denoted as MoO2-

C-Cu. Then, the black sample was dispersing into 0.1 M FeCl3 aqueous solution under 

string for 12 h to remove the copper particles. The resulting porous MoO2-C nano-

octahedrons was washed with DI and followed by vacuum drying at 70 °C for 12 h. As 

a control experiment, MoO2-C nano-octahedron was treated with 0.2 M diluted 

hydrochloric acid and denoted C nano-octahedron.

Preparation of Porous MoN-NC Nano-Octahedrons:
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The MoO2-C and C nano-octahedrons were annealed at 650 °C for 6 h ammonia flow 

and the heating rate was 2 °C min−1. Finally, the porous MoN-NC and CN nano-

octahedrons were obtained. As a control experiment, bulk MoO2 was annealed by the 

same procedure to prepare the bulk MoN material. 

Preparation of S/MoN-NC composites

Sulfur encapsulation was performed via a melt-diffusion method. A mixture of sulfur 

(77 wt %) with MoN-NC composites was hand-milled for 20 min and then transferred 

to an autoclave and heated at 155 °C for 12 h. Upon cooling, the final materials were 

collected as 77S/MoN-NC. The 77S/MoN and 77S/NC composites were prepared via 

the same procedure as above.

Preparation of Li2S6 Solution: 

The Li2S6 solution was prepared by dissolving lithium sulfide (46 mg) and sublimed 

sulfur (224 mg) in a molar ratio of 1:7 in 5 mL in 1,2-dimethoxyethane (DME, 99.5%, 

Alfa Aesar), and 1,3-dioxolane (DOL, 99.5%, Alfa Aesar) (1:1 ratio, by volume).

The morphology analyses were conducted with TEM (Nova Nano SEM 230) and 

TEM (Tecnai G2 20ST) coupled with an attached energy dispersive X-ray spectroscopy 

(EDS). Powder X-ray diffraction (XRD, Rigaku 3014) were characterized with Cu-Кα 

source. The sulfur content was confirmed by TGA analysis (Netzsch, STA 449C) under 

N2 flow at a heating rate of 10 °C/min. The N2 adsorption measurements were 

performed on ASAP 2460 analyzer (Micromeritics, USA) at 77 K. The chemical state 

of elements in composites was tested on X-ray photo-electron spectroscopy (XPS, 

ESCA LAB 250Xi).
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Electrochemical Measurement: 

To prepare the working electrode, a slurry was obtained by mixing and stirring the as-

prepared composites, conductive carbon black and polyvinyldifluoride (PVDF) with 

the mass ratio of 8:1:1 in N-methyl-2-pyrrolidone, respectively. Then, the slurry was 

spread onto Al current collector and dried under vacuum at 60 °C for 12 h in vacuum 

for 10 h. The sulfur loading was controlled at 1.9–4.9 mg cm−2. The coin-type cells 

(2032) were assembled with metallic Li as the counter electrodes and Celgard 2400 as 

a separator. The electrolyte was consisted of 1.0 m lithium 

bis(trifluoromethanesulfonyl) imide (LiTFSI) in 1, 3-dioxolane (DOL) and 1,2-

dimethoxyethane (DME) (v/v, 1:1) with 2 % LiNO3 as the additive. The volume of the 

electrolyte used in each cell was 30–50 μL, and the electrolyte-to-sulfur (E/S) ratio was 

about 15–20 μL mg−1. Discharge/charge tests were carried out between 1.7 and 2.8 V 

(vs Li/Li+) at various C rates (1 C = 1675 mA h g−1) with LAND-CT2001A instruments 

(Wuhan Jinnuo, China). CV and EIS measurements were performed on electrochemical 

workstation (Solartron 1470E battery test) with a scan rate of 0.1 mV s−1. In addition, 

EIS were performed using electrochemical workstation (Solartron 1470E battery test) 

in the frequency range between 10 mHz and 100 kHz.
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Calculation Method

The calculations are performed on density functional theory (DFT) with Vienna ab 

initio package (VASP) [2]. The exchange-correlation interactions are describe by 

general gradient approximation of Perdew-Burke-Ernzerhof (GGA-PBE) [3]. The 

energy cutoff of plane wave functions are set to 500 eV. A 20 Å vacuum layer is used. 

The reciprocal space is sampled using a 4 × 4 × 1 point grid by Monkhorst-Pack K-

points scheme. The structures are relaxed until the residual force on each atom is less 

than 0.01 eV Å-1. The calculated lattice constants of MoN along x, y and z axes are 8.79 

Å, 8.79 Å and 13.62 Å. The adsorption energies are calculated by the equation:

𝐸𝑎= 𝐸𝐿𝑖2𝑆𝑥+ 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒
‒ 𝐸𝐿𝑖2𝑆𝑥

‒ 𝐸𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒

Where, the , ,   and  represent the adsorption 𝐸𝑎
𝐸𝐿𝑖2𝑆𝑥+ 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒

𝐸𝐿𝑖2𝑆𝑥 𝐸𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒

energy, the total energy of Li2Sx species, the total energy of Li2Sx and the total of the 

MoN substrates.
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Figure S-1. (a) and (b): the as-prepared SEM and TEM image of NENU-5 POMOFs; 

the insert picture is the digital photos of NENU-5 POMOFs.
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Figure S-2. a) XRD pattern of NENU-5 POMOFs and XRD pattern of MoO2/CN.
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Figure S-3. Thermogravimetric curve of 77S/MoN-NC.
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Figure S-4. a) XRD patterns; (b) SEM image; (c) N2 adsorption-desorption isotherms 

isotherms, and (d) pore size distributions of the as-prepared MoN.
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Figure S-5. a) The overview XPS spectrum of 77S/Mo-NC composites; (b) XPS 

spectra of S 2p for the 77S/Mo-NC composites.
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Figure S-6. Long-term cycling performance of the NC and MoN-NC 

electrodes. (current density= 837 mA g-1)

The maximum capacity that MoN nanoparticles was expected to contribute 

by their Li+ intersection pseudo-capacitive behavior is calculated according 

to The specific capacity of MoN ×(MoN/S ratio of the 77S/MoN-NC 

cathode)

For example,

The specific capacity of MoN =86 mA h g-1,

MoN/S ratio of the NC/ MoN /S cathode = (0.23×0.11) / 0.77 = 0.032

The increased specific capacity of sulfur contributed by MoN in the 

77S/MoN-NC cathode = 86×0.032 = 2.8 mA h g-1.

The NC deliver more than 60 mA h g-1, should because the pseudo-

capacitive Li+ storage behaviour. It should be noted that after the sulfur 

impregnation, the surface of carbon framework should be covered by the 
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sulfur, thus the electronic double layer capacitance (EDLC) of NC should 

be heavily discounted. Considering the Li+ insertion-desertion redox 

reaction, the pseudo-capacitive-type capacity of MoN shall not be affected. 

But it only contributes less than 0.3% of overall capacity (2.8 mAh g-1 vs 

934 mAh g-1 at 0.5 C). 
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Figure S-7. Galvanostatic discharge-charge voltage profile at 0.5 C of 

77S/MoN-NC composite.
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Figure S-8. EIS spectra of 77S/MoN-NC, 77S/MoN and 77S/NC after 

200 cycles.
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Figure S-9. a) The cross-section SEM images and b) the corresponding 

energy-dispersive X-ray spectroscopys (EDS) analysis of fresh lithium 

anode and the cross-section SEM images of lithium anode after 200               

cycles combing with MoN-NC, MoN and NC.
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Figure S-10. Ex situ TEM image of 77S/Mo-NC cycles after 400 cycles.
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Table S-1. Comparison of the cycling performance of this work with other 

previously reported metal compounds as sulfur host materials for Li-S 

batteries.

Ref. Sulfur host
Sulfur 
weight 
(wt.%)

Sulfur 
loading

Current 
rate (C)

Cycle 
number

Capacity 
(mAh g-

1)
This 
work MoN-NC 77 6.5 0.5 200 597

4 Porous-Shell VN 
nanobubbles 78.2 5.7 0.33 200 563

5 WN 8 0.1 100 697

6
Porous Carbon 

Fibers/Vanadium 
Nitride Arrays

60 8.1 1 250 912

7 ACNF/CoS 50 7.5 0.5 100 701

8 CoO/Co@PCF 60 5.4 0.5 100 684

9 VN 6.8 0.5 200 563
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