Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

# **Supporting Information**

# Iodine doped composite with biomass carbon dots and reduced graphene oxide: A versatile

## bifunctional electrode for energy storage and oxygen reduction reaction

Van Chinh Hoang<sup>1</sup>, Khang Ngoc Dinh<sup>1,2</sup>, Vincent G. Gomes<sup>1\*</sup>

<sup>1</sup>The University of Sydney, School of Chemical and Biomolecular Engineering, NSW 2006, Australia

<sup>2</sup>Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang

Technological University, Singapore 637553, Singapore

\* E-mail: vincent.gomes@sydney.edu.au



Fig S1. SEM image, EDX spectra and elemental mappings of eggplant used in this study. The scale bar is  $50 \ \mu m$ .



Fig S2. SEM micrograph, corresponding EDX spectrum and elemental mappings of the asprepared CDs. The scale bar is  $10 \,\mu$ m.



Fig S3. SEM image and corresponding EDX elemental mappings of RGO. The scale bar is 2.5 µm.



Fig S4. SEM image and corresponding EDX elemental mappings of the RGO/CDs composite. The scale bar is 2.5  $\mu$ m.



Fig S5. SEM image and corresponding EDX elemental mappings of the HI-RGO/CDs. The scale bar is 2.5  $\mu$ m.



Fig S6. FTIR spectra of various samples.



Fig S7. SEM image and corresponding EDX elemental mappings of the HI-RGO. The scale bar is  $2.5 \ \mu m$ .



Fig S8. Comparison of Raman (a) and FTIR (b) spectra of RGO and HI-RGO, (c) nitrogen adsorption/desorption isotherms and (d) pore size distributions of HI-RGO.



Fig S9. CV curves of (a) RGO, (b) RGO/CDs and (c) HI- RGO/CDs in 1 M H<sub>2</sub>SO<sub>4</sub>.



Fig S10. Galvanostatic charge/discharge curves of (a) RGO, (b) RGO/CDs and (c) HI-RGO/CDs in 1 M H<sub>2</sub>SO<sub>4</sub>.



Fig S11. (a) CV curves, (b) GCD curves of HI-RGO in 1 M H<sub>2</sub>SO<sub>4</sub>, (c) specific capacitance of materials calculated from its CV and GCD curves, (d) comparison of Nyquist plots of RGO and HI-RGO.



Fig S12. (a) CV curves at 50 mV s<sup>-1</sup> in 1 M KOH; (b) galvanostatic charge/discharge curves at 1 A g<sup>-1</sup> of three samples in 1 M KOH; (c) specific capacitances calculated from CV, (d) specific capacitances from GCD curves.



Fig S13. CV curves of (a) RGO, (b) RGO/CDs, (c) HI- RGO/CDs and (d) HI-RGO in 1 M KOH.



Fig S14. Galvanostatic charge/discharge curves of (a) RGO, (b) RGO/CDs, (c) HI-RGO/CDs and (d) HI-RGO in 1 M KOH.



Fig S15. (a) CV curves, (b) GCD curves of HI-RGO/CDs at high loading of 8 mg cm<sup>-2</sup> on Ni foam in 1 M Na<sub>2</sub>SO<sub>4</sub>, (c) specific capacitance of materials calculated from its CV and GCD curves.

| References | Electrode materials | Max specific<br>capacitance<br>(F g <sup>-1</sup> ) | Current<br>density / scan<br>rate | Electrolyte                        |
|------------|---------------------|-----------------------------------------------------|-----------------------------------|------------------------------------|
| This work  | HI-RGO/CDs          | 432                                                 | 2 mV s <sup>-1</sup>              | 1 M H <sub>2</sub> SO <sub>4</sub> |
|            |                     | 295                                                 | 1,000 mV s <sup>-1</sup>          |                                    |
|            |                     | 460                                                 | 1 A g <sup>-1</sup>               |                                    |

Table S1. Comparison of graphene based supercapacitors reported in the literature.

|    |                                          | 352 | 100 A g <sup>-1</sup>    |                                         |
|----|------------------------------------------|-----|--------------------------|-----------------------------------------|
|    |                                          | 420 | 2 mV s <sup>-1</sup>     | 1 М КОН                                 |
|    |                                          | 290 | 1,000 mV s <sup>-1</sup> |                                         |
|    |                                          | 426 | 3 A g <sup>-1</sup>      |                                         |
|    |                                          | 325 | 100 A g <sup>-1</sup>    |                                         |
| 1  | I-graphene/CDs                           | 374 | 2 mV s <sup>-1</sup>     | 1 М КОН                                 |
|    |                                          | 352 | 5 mV s <sup>-1</sup>     |                                         |
| 2  | CDs/graphene                             | 264 | 1 A g <sup>-1</sup>      | 1 M H <sub>2</sub> SO <sub>4</sub> -PVA |
|    | nydrogel                                 | 210 | 10 A g <sup>-1</sup>     |                                         |
| 3  | N,S-codoped                              | 141 | 0.13 A g <sup>-1</sup>   | 1 M Na <sub>2</sub> SO <sub>4</sub>     |
|    |                                          |     | 1                        |                                         |
| 4  | RGO/CDs                                  | 262 | $2 \text{ A g}^{-1}$     | 6 M KOH                                 |
|    |                                          | 247 | 5 A g <sup>-1</sup>      |                                         |
|    |                                          | 236 | 10 A g <sup>-1</sup>     |                                         |
| 5  | CDs/RGO                                  | 212 | 0.5 A g <sup>-1</sup>    | 1 M H <sub>2</sub> SO <sub>4</sub>      |
| 6  | N-doped CDs/RGO                          | 278 | 0.2 A g <sup>-1</sup>    | 1 M H <sub>2</sub> SO <sub>4</sub>      |
|    |                                          | 227 | 2 mV s <sup>-1</sup>     |                                         |
| 7  | Graphene hydrogel                        | 175 | 10 mV s <sup>-1</sup>    | 5 M KOH                                 |
| 8  | N,B-codoped graphene                     | 239 | 1 mV s <sup>-1</sup>     | 1 M H <sub>2</sub> SO <sub>4</sub>      |
| 9  | Graphene/carbon<br>aerogel               | 122 | 0.05 A g <sup>-1</sup>   | 6 М КОН                                 |
| 10 | N-doped graphene                         | 282 | 0.2 A g <sup>-1</sup>    | 6 M KOH                                 |
| 11 | Graphene/SWCNT                           | 199 | 0.5 A g <sup>-1</sup>    | EMIM-BF <sub>4</sub>                    |
| 12 | Mesoporous<br>carbon/graphene<br>aerogel | 226 | 1 mV s <sup>-1</sup>     | 1 M H <sub>2</sub> SO <sub>4</sub>      |
| 13 | Nitrogen-Superdoped                      | 380 | 0.6 A g <sup>-1</sup>    | 6 M KOH                                 |
|    | SD Grapnene                              | 312 | 5 mV s <sup>-1</sup>     |                                         |

| 14 | Hydroquinone                                     | 441   | 1 A g <sup>-1</sup>    | 1 M H <sub>2</sub> SO <sub>4</sub> |  |
|----|--------------------------------------------------|-------|------------------------|------------------------------------|--|
|    | graphene hydrogel                                | 352   | 20 A g <sup>-1</sup>   |                                    |  |
| 15 | Nitrogen-doped<br>graphene hydrogels             | 308   | 3 A g <sup>-1</sup>    | 6 М КОН                            |  |
| 16 | Rumpled N-doped                                  | 479   | 1 A g <sup>-1</sup>    | 1 M H <sub>2</sub> SO <sub>4</sub> |  |
|    |                                                  | 423   | 5 mV s <sup>-1</sup>   |                                    |  |
| 17 | Holey RGO<br>framework                           | 310   | 1 A g <sup>-1</sup>    | 6 M KOH                            |  |
| 18 | Three-dimensional<br>Nitrogen-doped<br>graphene  | 334   | 0.5 A g <sup>-1</sup>  | 6 М КОН                            |  |
| 19 | P-doped graphene                                 | 367   | 5 mV s <sup>-1</sup>   | 1 M H <sub>2</sub> SO <sub>4</sub> |  |
| 20 | Nitrogen-doped<br>graphene hollow<br>nanospheres | 381   | 1 A g <sup>-1</sup>    | 6 M KOH                            |  |
| 21 | N doped graphene                                 | 326   | 0.2 A g <sup>-1</sup>  | 6 M KOH                            |  |
| 22 | N-doped, ultralight                              | 484   | 1 A g <sup>-1</sup>    | 1 M LiClO <sub>4</sub>             |  |
|    | graphene framework                               | 417   | 100 A g <sup>-1</sup>  |                                    |  |
| 23 | Nitrogen doped RGO                               | 364.6 | 10 mV s <sup>-1</sup>  | 1 M H <sub>2</sub> SO <sub>4</sub> |  |
| 24 | Nitrogen doped RGO                               | 459   | $1 \text{ mA cm}^{-2}$ | 1 M H <sub>2</sub> SO <sub>4</sub> |  |
| 25 | Nitrogen doped graphene                          | 324   | 0.1 A g <sup>-1</sup>  | 6 M KOH                            |  |
| 26 | Nitrogen doped RGO                               | 340   | 0.5 A g <sup>-1</sup>  | 6 M KOH                            |  |
| 27 | N-graphene from silk cocoon                      | 348   | 5 mV s <sup>-1</sup>   | 1 M H <sub>2</sub> SO <sub>4</sub> |  |
| 28 | B doped graphene                                 | 281   | 1 A g <sup>-1</sup>    | 2 M H <sub>2</sub> SO <sub>4</sub> |  |
| 29 | S doped RGO                                      | 343   | 0.2 A g <sup>-1</sup>  | 2 M KOH                            |  |
| 30 | S-doped RGO aerogels                             | 445.6 | 5 mV s <sup>-1</sup>   | 1 M H <sub>2</sub> SO <sub>4</sub> |  |
| 31 | N-doped RGO aerogel                              | 350   | 1 A g <sup>-1</sup>    | 1 M H <sub>2</sub> SO <sub>4</sub> |  |



Fig S16. SEM image and corresponding EDX elemental mappings of the HI-RGO/CDs after 10,000 GCD cycles at  $10 \text{ A g}^{-1}$ . The scale bar is 2.5  $\mu$ m.

**Table S2**.  $R_{ct}$  values, Warburg prefactor and diffusion coefficient of  $H^+$  ( $D_{H^+}$ ) of HI-RGO and HI-RGO/CD electrodes.

|                                                                  | HI-RGO | HI-RGO/CDs |
|------------------------------------------------------------------|--------|------------|
| $R_{ct}(\Omega)$                                                 | 7.9    | 2.3        |
| $\sigma_{\rm w} \left(\Omega \ {\rm s}^{-1/2}\right)$            | 269.9  | 103.7      |
| $D_{H^+}$ (x 10 <sup>-18</sup> cm <sup>2</sup> s <sup>-1</sup> ) | 12.6   | 85.5       |



Fig S17. Bode plots of phase angle versus frequency.

**Table S3.** Total specific capacitance  $C_{sp}$ , electrical double layer capacitance (EDLC) and pseudocapacitance (PC) of electrodes at scan rates, unit F g<sup>-1</sup>.

| Scan               | RGO             |      |      | RGO/CDs         |       |      | HI-RGO/CDs      |       |      |
|--------------------|-----------------|------|------|-----------------|-------|------|-----------------|-------|------|
| rate,              |                 |      |      |                 |       |      |                 |       |      |
| mV s <sup>-1</sup> | C <sub>sp</sub> | EDLC | PC   | C <sub>sp</sub> | EDLC  | PC   | C <sub>sp</sub> | EDLC  | РС   |
|                    |                 |      |      |                 |       |      |                 |       |      |
| 2                  | 139.3           | 84.9 | 54.5 | 248.4           | 193.0 | 55.4 | 431.9           | 337.5 | 94.4 |
| 5                  | 114.5           | 80.1 | 34.4 | 234.7           | 199.6 | 35.1 | 409.3           | 349.5 | 59.8 |
| 10                 | 107.8           | 83.5 | 24.3 | 225.2           | 200.5 | 24.7 | 393.4           | 351.2 | 42.2 |
| 20                 | 101.2           | 84.0 | 17.2 | 216.9           | 199.4 | 17.5 | 378.9           | 349.1 | 29.8 |
| 50                 | 95.2            | 84.3 | 10.9 | 206.4           | 195.3 | 11.1 | 360.8           | 342.0 | 18.8 |
| 100                | 90.9            | 83.2 | 7.7  | 199.5           | 191.7 | 7.8  | 348.4           | 335.0 | 13.4 |
| 200                | 84.3            | 78.8 | 5.5  | 192.7           | 187.2 | 5.5  | 335.5           | 326.1 | 9.4  |
| 500                | 77.8            | 74.3 | 3.5  | 182.8           | 179.3 | 3.5  | 315.5           | 309.5 | 6.0  |
| 1000               | 70.5            | 68.1 | 2.4  | 173.8           | 171.3 | 2.5  | 295.3           | 291.1 | 4.2  |



Fig S18. LSV curves of (a) RGO, (b) RGO/CDs and (c) Pt/C at various rotation frequencies in O<sub>2</sub>-saturated 0.1 M KOH.



Fig S19. Koutecky–Levich plots of (a) RGO, (b) RGO/CDs, (c) HI-RGO/CDs and (d) Pt/C at several

potentials in O<sub>2</sub>-saturated 0.1 M KOH.



Fig S20. (a) LSV curves of HI-RGO at various rotation frequencies in O<sub>2</sub>-saturated 0.1 M KOH. (b) Koutecky–Levich plots HI-RGO at several potentials in O<sub>2</sub>-saturated 0.1 M KOH.

| References | Catalysts Onset          |               | jl                     | <b>j</b> k             | Electron     |
|------------|--------------------------|---------------|------------------------|------------------------|--------------|
|            |                          | potential (V) |                        |                        | transfer     |
|            |                          | vs. RHE       | (mA cm <sup>-2</sup> ) | (mA cm <sup>-2</sup> ) | number, n    |
| This work  | HI-RGO/CDs               | 0.93          | 4.62                   | 19.8                   | 3.1-4.0      |
| 32         | Cl-graphene nanoplatelet | 0.804         | 0.18 mA                |                        | 3.5 (-0.8 V) |
| 32         | Br-graphene nanoplatelet | ~ 0.814       | 0.28 mA                |                        | 3.8 (-0.8 V) |
| 32         | I-graphene nanoplatelet  | 0.824         | 0.4 mA                 |                        | 3.9 (-0.8 V) |
| 33         | I-graphene               | 0.884         | 7.2                    | 9.21                   | 3.86         |
| 34         | N,I-codoped graphene     | 0.884         |                        | 11.76                  | 3.93         |
| 35         | B-doped graphene         | 0.914         | ~0.54 mA               |                        | 3.5          |
| 36         | Plasma-treated graphene  | 0.912         |                        |                        | 3.85         |
| 36         | Graphene                 | 0.806         |                        |                        | 2.31         |
| 37         | N-graphene               | 0.826         | 2.0                    |                        | 1.7-2.0      |
| 37         | N-CNT                    | 0.837         | 2.1                    |                        | 1.9-2.3      |
| 37         | N-graphene/N-CNT         | 0.869         | 3.2                    |                        | 3.3-3.7      |
| 38         | N-graphene               | 0.764         | 0.8                    |                        | 3.6-4        |
| 39         | N-graphene               | 0.924         | ~5.1                   |                        | 3.3-4        |
| 40         | N-GQDs                   | 0.969         |                        |                        | 3.9          |
| 41         | N-graphene/CNT           | 0.91          | ~5.4                   |                        | 3.78-3.93    |
| 42         | N-hollow mesoporous      | 0.14          |                        |                        | 3.9          |
|            | graphene analogous       |               |                        |                        |              |
|            | spheres                  |               |                        |                        |              |
| 43         | N,P-carbon               | 0.9           | ~5.0                   | 12.9                   | 3.86         |
| 44         | N, P-mesoporous          | 0.94          | ~4.2                   | ~26                    | 3.85         |
|            | nanocarbon               |               |                        |                        |              |
| 45         | N,P-CNTs/ graphene       | 0.94          |                        | 5.9                    | 3.95         |
|            | nanospheres              |               |                        |                        |              |
| 46         | R2CPC                    | 0.778         |                        |                        | 2.5          |
| 46         | R4CPC                    | 0.738         |                        |                        | 3.7          |
| 3          | N,S-graphene/CDs         | 0.84          |                        |                        | 3.5-3.75     |
| 47         | N-doped carbon aerogels  | 0.844         |                        |                        | 3-3.7        |
| 48         | Soy protein- derived     | 0.904         |                        |                        | 3.3-3.7      |
| 10         | porous carbon aerogels   |               |                        |                        |              |
| 49         | N,S-carbon aerogels      | 0.834         |                        |                        | 2.7-3.7      |
| 50         | N-porous carbon          | 0.85          | 2.67                   | 2.42                   | 3.5-3.9      |
| 51         | N-doped carbon           | 1.224         | 4.24                   |                        | 3.4          |
| 52         | Cellulose-derived carbon | ~ 0.92        | 3.3                    | 6.9                    | 3.6-3.9      |
| 53         | Corn starch-derived      | 0.934         | 4.5                    | 8.1                    | 3.5          |
|            | carbon nanosheets        |               |                        |                        |              |
| 54         | N-carbon fiber aerogel   | 1.01          | 4.7                    |                        | 3.47-3.9     |

 Table S4. Comparison of metal-free carbon based ORR electrocatalysts reported in the literature.

| 55 | Chitosan-derived N-<br>carbon                            | 0.934              | 4.9  | 37.04 | 3.42-3.67 |
|----|----------------------------------------------------------|--------------------|------|-------|-----------|
| 56 | N,S-carbon nanoplatelets                                 | 0.97               | 7.06 |       | 3.8       |
| 57 | Water hyacinth derived porous carbon                     | 0.98               | 4.5  | 1.04  | 3.51-3.82 |
| 58 | Bamboo fungus derived carbon                             | 0.089 <sup>a</sup> | 3.55 |       | 3.6       |
| 59 | Pulsatilla<br>chinensis (bunge) Regel-<br>derived carbon | 0.944              | 4.36 |       | 3.46-3.6  |
| 60 | Human urine-derived<br>porous carbon                     | 0.934              | 3.5  |       | 3.7       |
| 61 | N,S-codoped 3D porous graphene                           | 0.904              | 5.34 |       | 3.52-3.83 |

<sup>a</sup> The potential is given with respect to Hg/HgO reference electrode.



Fig S21. i-t chronoamperometric reponses of HI-RGO/CDs and commercial Pt/C before and after the addition of 3.0 M methanol to O<sub>2</sub>-saturated 0.1 M KOH electrolytes.



Fig S22. SEM image and corresponding EDX elemental mappings of the HI-RGO/CDs after 22 h ORR stability test. The scale bar is  $2.5 \,\mu$ m.

### **ECSA of materials**

The electrochemically active surface areas (ECSA) of the samples were determined from their double layer capacitance (C<sub>dl</sub>). CV scans were carried out in a non-Faradaic region between -0.1 and 0 V (vs. Ag/AgCl) at various scan rates from 5 to 100 mV s<sup>-1</sup> in 0.1 M KOH. C<sub>dl</sub> was calculated from following formula:

$$C_{\rm dl} = \frac{1}{2V\nu} \int_{V_{-}}^{V_{+}} i(V) dV \tag{1}$$

ECSA was then normallized by specific capacitance of corresponding materials (Cs):

$$ECSA = \frac{C_{dl}}{C_s}$$
(2)

Since a commonly used  $C_s$  value for carbon is 20 mF cm<sup>-2</sup> <sup>62</sup>, we calculated ECSA values of the catalysts and the results are depicted in Fig S21e.



**Fig S23**. CV scan curves of (a) RGO, (b) RGO/CDs, (c) HI-RGO/CDs and (d) HI-RGO at variable scan rates from 5 to 100 mV s<sup>-1</sup> in 0.1 M KOH; (e) corresponding ECSA of four electrodes.

#### References

- 1. V. C. Hoang and V. G. Gomes, *Materials Today Energy*, 2019, **12**, 198-207.
- 2. H. Feng, P. Xie, S. Xue, L. Li, X. Hou, Z. Liu, D. Wu, L. Wang and P. K. Chu, *Journal of Electroanalytical Chemistry*, 2018, **808**, 321-328.
- 3. A. K. Samantara, S. Chandra Sahu, A. Ghosh and B. K. Jena, *Journal of Materials Chemistry A*, 2015, **3**, 16961-16970.
- 4. X. Zhao, M. Li, H. Dong, Y. Liu, H. Hu, Y. Cai, Y. Liang, Y. Xiao and M. Zheng, *ChemSusChem*, 2017, **10**, 2626-2634.
- 5. Y. Q. Dang, S. Z. Ren, G. Liu, J. Cai, Y. Zhang and J. Qiu, *Nanomaterials (Basel)*, 2016, **6**.
- 6. V. C. Hoang, L. H. Nguyen and V. G. Gomes, *Journal of Electroanalytical Chemistry*, 2019, **832**, 87-96.
- 7. Y. Xu, K. Sheng, C. Li and G. Shi, ACS Nano, 2010, 4, 4324-4330.
- 8. Z.-S. Wu, A. Winter, L. Chen, Y. Sun, A. Turchanin, X. Feng and K. Müllen, *Advanced Materials*, 2012, **24**, 5130-5135.
- 9. F. Meng, X. Zhang, B. Xu, S. Yue, H. Guo and Y. Luo, *Journal of Materials Chemistry*, 2011, **21**, 18537-18539.
- 10. H. M. Jeong, J. W. Lee, W. H. Shin, Y. J. Choi, H. J. Shin, J. K. Kang and J. W. Choi, *Nano Letters*, 2011, **11**, 2472-2477.
- 11. D. T. Pham, T. H. Lee, D. H. Luong, F. Yao, A. Ghosh, V. T. Le, T. H. Kim, B. Li, J. Chang and Y. H. Lee, *ACS Nano*, 2015, **9**, 2018-2027.
- 12. Z.-S. Wu, Y. Sun, Y.-Z. Tan, S. Yang, X. Feng and K. Müllen, *Journal of the American Chemical Society*, 2012, **134**, 19532-19535.
- 13. W. Zhang, C. Xu, C. Ma, G. Li, Y. Wang, K. Zhang, F. Li, C. Liu, H. M. Cheng, Y. Du, N. Tang and W. Ren, *Adv Mater*, 2017, **29**.
- 14. Y. Xu, Z. Lin, X. Huang, Y. Wang, Y. Huang and X. Duan, *Adv Mater*, 2013, **25**, 5779-5784.
- 15. H.-L. Guo, P. Su, X. Kang and S.-K. Ning, J. Mater. Chem. A, 2013, 1, 2248-2255.
- 16. Y. Zhao, J. Liu, B. Wang, J. Sha, Y. Li, D. Zheng, M. Amjadipour, J. MacLeod and N. Motta, *ACS Appl Mater Interfaces*, 2017, **9**, 22588-22596.
- 17. Y. Xu, Z. Lin, X. Zhong, X. Huang, N. O. Weiss, Y. Huang and X. Duan, *Nat Commun*, 2014, **5**, 4554.
- 18. X. Zhao, H. Dong, Y. Xiao, H. Hu, Y. Cai, Y. Liang, L. Sun, Y. Liu and M. Zheng, *Electrochimica Acta*, 2016, **218**, 32-40.
- 19. P. Karthika, N. Rajalakshmi and K. S. Dhathathreyan, *Journal of Nanoscience and Nanotechnology*, 2013, **13**, 1746-1751.
- 20. W. Fan, Y.-Y. Xia, W. W. Tjiu, P. K. Pallathadka, C. He and T. Liu, *Journal of Power Sources*, 2013, **243**, 973-981.
- 21. L. Sun, L. Wang, C. Tian, T. Tan, Y. Xie, K. Shi, M. Li and H. Fu, *RSC Advances*, 2012, **2**, 4498-4506.
- 22. Y. Zhao, C. Hu, Y. Hu, H. Cheng, G. Shi and L. Qu, *Angewandte Chemie International Edition*, 2012, **51**, 11371-11375.
- 23. C. Chen, W. Fan, T. Ma and X. Fu, *Ionics*, 2014, **20**, 1489-1494.
- 24. M. P. Kumar, T. Kesavan, G. Kalita, P. Ragupathy, T. N. Narayanan and D. K. Pattanayak, *RSC Advances*, 2014, **4**, 38689-38697.

- 25. H. Jin, X. Wang, Z. Gu, Q. Fan and B. Luo, *Journal of Power Sources*, 2015, **273**, 1156-1162.
- 26. H. Luo, Z. Liu, L. Chao, X. Wu, X. Lei, Z. Chang and X. Sun, *Journal of Materials Chemistry A*, 2015, **3**, 3667-3675.
- V. Sahu, S. Grover, B. Tulachan, M. Sharma, G. Srivastava, M. Roy, M. Saxena, N. Sethy, K. Bhargava, D. Philip, H. Kim, G. Singh, S. K. Singh, M. Das and R. K. Sharma, *Electrochimica Acta*, 2015, 160, 244-253.
- 28. Z. Zuo, Z. Jiang and A. Manthiram, *Journal of Materials Chemistry A*, 2013, 1, 13476-13483.
- 29. X. a. Chen, X. Chen, X. Xu, Z. Yang, Z. Liu, L. Zhang, X. Xu, Y. Chen and S. Huang, *Nanoscale*, 2014, **6**, 13740-13747.
- 30. X. Yu, S. K. Park, S.-H. Yeon and H. S. Park, *Journal of Power Sources*, 2015, **278**, 484-489.
- 31. Y. Du, L. Liu, Y. Xiang and Q. Zhang, Journal of Power Sources, 2018, 379, 240-248.
- 32. I.-Y. Jeon, H.-J. Choi, M. Choi, J.-M. Seo, S.-M. Jung, M.-J. Kim, S. Zhang, L. Zhang, Z. Xia, L. Dai, N. Park and J.-B. Baek, *Scientific Reports*, 2013, **3**, 1810.
- Z. Yao, H. Nie, Z. Yang, X. Zhou, Z. Liu and S. Huang, *Chemical Communications*, 2012, 48, 1027-1029.
- 34. M. Hassan, E. Haque, A. I. Minett and V. G. Gomes, *ChemSusChem*, 2015, **8**, 4040-4048.
- 35. Z.-H. Sheng, H.-L. Gao, W.-J. Bao, F.-B. Wang and X.-H. Xia, *Journal of Materials Chemistry*, 2012, **22**, 390-395.
- 36. L. Tao, Q. Wang, S. Dou, Z. Ma, J. Huo, S. Wang and L. Dai, *Chemical Communications*, 2016, **52**, 2764-2767.
- 37. P. Chen, T.-Y. Xiao, Y.-H. Qian, S.-S. Li and S.-H. Yu, *Advanced Materials*, 2013, **25**, 3192-3196.
- 38. L. Qu, Y. Liu, J.-B. Baek and L. Dai, ACS Nano, 2010, 4, 1321-1326.
- 39. C. Zhang, R. Hao, H. Liao and Y. Hou, *Nano Energy*, 2013, 2, 88-97.
- 40. Q. Li, S. Zhang, L. Dai and L.-s. Li, *Journal of the American Chemical Society*, 2012, **134**, 18932-18935.
- 41. C. H. Choi, M. W. Chung, H. C. Kwon, J. H. Chung and S. I. Woo, *Applied Catalysis B: Environmental*, 2014, **144**, 760-766.
- 42. J. Yan, H. Meng, F. Xie, X. Yuan, W. Yu, W. Lin, W. Ouyang and D. Yuan, *Journal of Power Sources*, 2014, **245**, 772-778.
- 43. X. Chen, L. Wei, Y. Wang, S. Zhai, Z. Chen, S. Tan, Z. Zhou, A. K. Ng, X. Liao and Y. Chen, *Energy Storage Materials*, 2018, **11**, 134-143.
- 44. J. Zhang, Z. Zhao, Z. Xia and L. Dai, *Nature Nanotechnology*, 2015, 10, 444.
- 45. J. Yang, H. Sun, H. Liang, H. Ji, L. Song, C. Gao and H. Xu, *Advanced Materials*, 2016, **28**, 4606-4613.
- 46. N. López-Salas, M. C. Gutiérrez, C. O. Ania, M. A. Muñoz-Márquez, M. Luisa Ferrer and F. d. Monte, *Journal of Materials Chemistry A*, 2016, **4**, 478-488.
- 47. N. Brun, S. A. Wohlgemuth, P. Osiceanu and M. M. Titirici, *Green Chemistry*, 2013, **15**, 2514-2524.
- 48. S.-M. Alatalo, K. Qiu, K. Preuss, A. Marinovic, M. Sevilla, M. Sillanpää, X. Guo and M.-M. Titirici, *Carbon*, 2016, **96**, 622-630.
- 49. S.-A. Wohlgemuth, R. J. White, M.-G. Willinger, M.-M. Titirici and M. Antonietti, *Green Chemistry*, 2012, **14**, 1515-1523.

- 50. X. Liu, L. Li, W. Zhou, Y. Zhou, W. Niu and S. Chen, *ChemElectroChem*, 2015, **2**, 803-810.
- 51. K. Ding, Q. Liu, Y. Bu, Y. Huang, J. Lv, J. Wu, S. C. Abbas and Y. Wang, *RSC Advances*, 2016, **6**, 93318-93324.
- 52. A. Mulyadi, Z. Zhang, M. Dutzer, W. Liu and Y. Deng, *Nano Energy*, 2017, **32**, 336-346.
- 53. Q. Zhao, Q. Ma, F. Pan, Z. Wang, B. Yang, J. Zhang and J. Zhang, *Journal of Solid State Electrochemistry*, 2016, **20**, 1469-1479.
- 54. Y. Li, H. Zhang, P. Liu, Y. Wang, H. Yang, Y. Li and H. Zhao, *Electrochemistry* Communications, 2015, **51**, 6-10.
- 55. Q. Liu, Y. Duan, Q. Zhao, F. Pan, B. Zhang and J. Zhang, *Langmuir*, 2014, **30**, 8238-8245.
- 56. X. Zhang, D. Yu, Y. Zhang, W. Guo, X. Ma and X. He, *RSC Advances*, 2016, **6**, 104183-104192.
- 57. X. Liu, Y. Zhou, W. Zhou, L. Li, S. Huang and S. Chen, *Nanoscale*, 2015, 7, 6136-6142.
- 58. S. Gao, H. Fan and S. Zhang, *Journal of Materials Chemistry A*, 2014, **2**, 18263-18270.
- 59. L. Zhao, *RSC Advances*, 2017, 7, 13904-13910.
- 60. N. K. Chaudhari, M. Y. Song and J.-S. Yu, Scientific Reports, 2014, 4, 5221.
- 61. I. S. Amiinu, J. Zhang, Z. Kou, X. Liu, O. K. Asare, H. Zhou, K. Cheng, H. Zhang, L. Mai, M. Pan and S. Mu, *ACS Applied Materials & Interfaces*, 2016, **8**, 29408-29418.
- 62. Y. Lei, L. Wei, S. Zhai, Y. Wang, H. E. Karahan, X. Chen, Z. Zhou, C. Wang, X. Sui and Y. Chen, *Materials Chemistry Frontiers*, 2018, **2**, 102-111.