Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Interfacial Electron Transfer Relay Center for Accelerating the Hydrogen Evolution Reaction

Xiaoqing Zhu^{a,b}, Xiaoyan Zhang^a, Bolong Huang ^{c*}, Jing Li ^{a*}, and Erkang Wang ^{a*} ^aState Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China ^bSchool of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China ^cDepartment of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China

Figure S1. (a) TEM image of Mo-polymelamine precursor; (b) SEM image of

S-800.

Figure S2. TEM images of S-700 (a), S-750 (b), and S-850 (c). The scar bar is

100 nm.

Figure S3. (a) XPS spectra of S-700, S-750, S-800, and S-850; (b) molar ratio of Mo^{0}/Mo^{2+} of S-750, S-800, and S-850.

Figure S4. N1s high-resolution XPS spectra of S-700 (a), S-750 (b), S-800 (c), and S-850 (d).

As shown in Figure S4, the N 1s spectrum is deconvoluted into three peaks at 397.5, 398.7, and 400.8 eV, corresponding to pyridinic-N, pyrrolic-N, and graphitic-N, respectively. It's noteworthy that the product of S-800 exhibits the highest ratio of pyridinic-N, which has been proved to be beneficial for enhancing the catalytic performance of water splitting.

Figure S5. Raman spectra of S-700, S-750, S-800, and S-850.

Figure S6. Cyclic voltammograms (CV) at different scan rate from 20 to 100

mV/s of S-700 (a), S-750 (b), S-800 (c), and S-850 (d).

Figure S7. (a) TEM image and (b) XRD pattern of S/800; (c) LSV curves and (d) Tafel plots of S/800 and S-800. S/800 was prepared by calcinating Mo-polymelamine precuesor at 800 oC for 1h directly.

Figure S8. LSV curves of S-800 at different scan rates.

Figure S9. Polarization curves of Pt/C for three times and S-800.

Figure S10. (a, b) TEM images, (c) XRD of S-800 after long-term stability test

for 30h.

Figure S11. Thermal gravimetric analysis of the Mo-polymelamine precursor.

Figure S12. (a) LSV curves and (b) Tafel plots of S-700, S-750, S-800, and S-

850 in 0.5 M H₂SO₄.

Catalyst	Onset potential (mV)	Overpotential at 10 mA cm ⁻² (mV vs RHE)	<i>j</i> ₀ (mA cm ⁻²)	Tafel slope (mV dec ⁻¹)
S-700	304	430	0.0036	139.5
S-750	180	323	0.047	123.8
S-800	58	145	0.24	78.4
S-850	90	219	0.023	118
Pt-C	0	81	0.67	63.2

Table S1. Comparison of catalytic parameters of different HER catalysts.

Materials	Overpotential at 10 mA cm ⁻ ² (mV vs RHE)	Tafel slope (mV dec ⁻¹)	<i>j</i> ₀ (mA cm ⁻ ²)	Mass loading (mg cm ⁻ ²)	Electrolyte	Ref.
MoC _x	151	59	0.029	0.8	1 M KOH	1
MoC _{0.654} @CNS	220	\	١	١	0.1 M KOH	2
Mo ₂ C/C	165	63.6	١	1	1 M KOH	3
MoB	250	59	0.002	2.3	1 M KOH	4
Ni/Mo ₂ C	179	101	0.2	0.5	1 M KOH	5
NiMo ₃ S ₄	252	98	0.039	0.3	1 M KOH	6
Mo ₂ C MPs	190	59	0.0038	1.1	1 M KOH	7
Mo ₂ N- Mo ₂ C/HGr-3	154	68	0.497	0.337	1 M KOH	8
Mo ₂ C/CNT	160	72	0.071	0.28	1 M KOH	9
MoC HNWs	221	101	0.00058	0.14	1 M KOH	10
Mo/Mo ₂ C@G core-shell heterointerface nanostructure	145	78.4	0.24	0.28	1 М КОН	This work

Table S2. Summary of Mo-based electrocatalysts for HER in alkalineelectrolytes.

References

- (1) H. B. Wu, B. Y. Xia, L. Yu, X.-Y. Yu, X. W. Lou, *Nat. Commun.* 2015, **6**, 6512.
- (2) J. Zhu, K. Sakaushi, G. Clavel, M. Shalom, M. Antonietti, T. P. Fellinger, J. Am. Chem. Soc. 2015, 137, 5480.
- (3) M. Qamar, A. Adam, B. Merzougui, A. Helal, O. Abdulhamid, M. N. Siddiqui, *J. Mater. Chem. A* 2016, **4**, 16225.
- (4) H. Vrubel, X. Hu, Angew. Chem. Int. Ed. 2012, **51**, 12703.
- (5) Z. Y. Yu, Y. Duan, M. R. Gao, C. C. Lang, Y. R. Zheng, S. H. Yu, Chem. Sci. 2017, 8, 968.
- (6) J. Jiang, M. Cao, W. Sheng, Y. Yan, *Angew.Chem. Int. Ed.* 2016, **55**, 15240.
- (7) H. Vrubel, X. Hu, Angew. Chem. Int. Ed. 2012, **51**, 12703.
- (8) H. Yan, Y. Xie, Y. Jiao, A. Wu, C. Tian, X. Zhang, L. Wang, H. Fu, Adv. Mater. 2018, **30**, 1704156.
- (9) H. Ang, H. Wang, B. Li, Y. Zong, X. Wang, Q. Yan, Small 2016, 12, 2859.
- (10) H. Lin, Z. Shi, S. He, X. Yu, S. Wang, Q. Gao, Y. Tang, *Chem. Sci.* 2016, **7**, 3399.