Supporting Information

A Multi-Shelled V₂O₃/C Composite with Overall Coupled Carbon Scaffold Enabling Ultrafast and Stable Lithium/Sodium Storage

Yutong Li,^a Su Zhang,^b Shitong Wang,^{a, c} Jin Leng,^a Caihua Jiang,^a Xiaowei Ren,^a Zhongtai Zhang,^a Yong Yang,^{*, d} Zilong Tang,^{*, a}

- a. State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China E-mail: <u>tzl@tsinghua.edu.cn</u>
- b. Key Laboratory of Energy Materials Chemistry, Ministry of Education; Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, Xinjiang University, Urumqi, 830046, P. R. China.
- c. Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- d. State Key Laboratory of Solidification Processing Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shanxi 710072, P. R. China E-mail: <u>yongyangfj@nwpu.edu.cn</u>

Figure S1. a) XRD pattern, b) SEM image, c) TEM image and d) EDS mapping of the multi-shelled V-PDA precusor.

Figure S2. Raman spectra of a) the multi-shelled V_2O_3/C composite and b) the multi-shelled carbon scaffold.

Figure S3. TGA curve of the multi-shelled V_2O_3/C composite.

Figure S4. SEM images of V-PDA precusors with different solvothermal durations. a) V-PDA-3h.b) V-PDA-6h. c) V-PDA-9h. d) V-PDA-20h.

Figure S5. a) TEM image of V_2O_3 nanoflakes prepared without adding dopamine hydrochloride. b) TEM image of polydopamine spheres obtained without adding vanadium salt.

Figure S6. SEM images of a) solid, b-c) double-shelled, and d-f) multi-shelled V₂O₃/C composites.

Figure S7. SEM images and TEM images of a-b) solid, c-d) double-shelled, and e-f) multi-shelled V_2O_3/C electrodes after 1500 cycles under 1000 mA g⁻¹ current density. The scale bars are 200 nm.

Figure S8. Equivalent circuit model using for fitting EIS spectra.

Samples	$R_{s}\left(\Omega ight)$	$R_{f}(\Omega)$	$R_{ct}(\Omega)$
Solid V ₂ O ₃ /C	2.1		324.4
Double-shelled V ₂ O ₃ /C	1.7		234.0
Multi-shelled V ₂ O ₃ /C	2.6		102.8
Multi-shelled V ₂ O ₃ /C after 100 cycles	4.3	22.1	41.4

Table S1. EIS fitting results according to the equivalent circuit model shown in Figure S8.

Figure S9. Capacitive-contributed to lithium storage of the multi-shelled V_2O_3/C electrode at a) 0.05 mV s⁻¹ and b) 0.6 mV s⁻¹.

Figure S10. CV curves of a) the solid and b) the double-shelled V_2O_3/C electrodes at different scan rates. Corresponding log(v)-log(i) linear relationship of c) the solid and d) the double-shelled V_2O_3/C electrodes. Capacitive-contributed to charge storage at 0.6 mV s⁻¹ of e) the solid and f) the double-shelled V_2O_3/C electrodes.

Figure S11. Normalized ratio comparison of diffusion and capacitive-controlled capacities calculated at different scan rates for solid, double-shelled and multi-shelled V_2O_3/C electrodes in LIBs.

Figure S12. Cycling performance of the solid, double-shelled, and multi-shelled V_2O_3/C composites for SIBs.

Figure S13. Comparison of the capacity retention in SIBs for multi-shelled V_2O_3 and other vanadium oxide-based anodes.

Figure S14. Cycling performance of the multi-shelled V_2O_3/C at 10 A g⁻¹.

Table S2. Comparison of long-term cycling stability in SIBs for multi-shelled V_2O_3 and reported vanadium oxide-based anodes.

Materials	Reversible capacity	Decay rate per cycle	Reference
Multi-shelled V ₂ O ₃ /C	79 mAh g ⁻¹ at 10 A g ⁻¹ after 2000 cycles	0.013%	This work
	173 mAh g ⁻¹ at 1 A g ⁻¹ after 2000 cycles	No decay	
V ₂ O ₃ -C	123 mAh g ⁻¹ at 2 A g ⁻¹ after 1000 cycles	0.032%	[1]
Amorphous V ₂ O ₅	140 mAh g ⁻¹ at 23.6 mA g ⁻¹ after 100 cycles	0.420%	[2]
V ₂ O ₅ -RFC	150 mAh g ⁻¹ at 40 mA g ⁻¹ after 70 cycles	0.357%	[3]
VO ₂ /rGO nanorods	173 mAh g ⁻¹ at 60 mA g ⁻¹ after 100 cycles	0.300%	[4]
VO ₂ /crumpled rGO	157 mAh g ⁻¹ at 4 A g ⁻¹ after 2000 cycles	0.013%	[5]
Bilayer V ₂ O ₅	200 mAh g ⁻¹ at 20 mA g ⁻¹ after 320 cycles	0.167%	[6]
TMC/V ₂ O ₅	51 mAh g ⁻¹ at 1.07 A g ⁻¹ after 2000 cycles	0.013%	[7]
GQDs-coated VO ₂	227 mAh g ⁻¹ at 1.5 A g ⁻¹ after 500 cycles	0.018%	[8]
V ₂ O ₃ /KB carbon	ca. 140 mAh g ⁻¹ at 1 A g ⁻¹ after 1000 cycles	ca. 0.060%	[9]

References

- 1 Y. S. Cai, G. Z. Fang, J. Zhou, S. N. Liu, Z. G. Luo, A. Q. Pan, G. Z. Cao and S. Q. Liang, Nano Res. 2018, **11**, 449.
- 2 E. Uchaker, Y. Z. Zheng, S. Li, S. L. Candelaria, S. Hu and G. Z. Cao, J. Mater. Chem. A 2014, **2**, 18208.

- 3 V. Raju, J. Rains, C. Gates, W. Luo, X. F. Wang, W. F. Stickle, G. D. Stucky and X. L. Ji, Nano Lett. 2014, 14, 4119.
- 4 G. He, L. J. L and A. Manthiram, J. Mater. Chem. A 2015, 3, 14750.
- 5 B. Yan, X. F. Li, Z. M. Bai, L. X. Lin, G. Chen, X. S. Song, D. B. Xiong, D. J. Li and X. L. Sun, J. Mater. Chem. A 2017, 5, 4850.
- 6 S. Tepavcevic, H. Xiong, V. R. Stamenkovic, X. B. Zuo, M. Balasubramanian, V. B. Prakepenka, C. S. Johnson and T. Rajh, ACS Nano 2012, 6, 530.
- 7 S. Fleischmann, D. Leistenschneider, V. Lemkova, B. Krüner, M. Zeiger, L. Borchardt and V. Presser, Chem. Mater. 2017, 29, 8653.
- 8 D. L. Chao, C. R. Zhu, X. H. Xia, J. L. Liu, X. Zhang, J. Wang, P. Liang, J. Y. Lin, H. Zhang, Z. X. Shen and H. J. Fan, Nano Lett. 2015, 15, 565.
- 9 X. X. An, H. L. Yang, Y. P. Wang, Y. Tang, S. Q. Liang, A. Q. Pan, G. Z. Cao, Sci. China Mater. 2017, 60, 717.