Supporting Information

Formation of Co-Mn mixed oxide double-shelled hollow spheres as advanced electrodes for

hybrid supercapacitors

Yan Guo,^a Chenhe Wu,^a Nian-Wu Li,^b Shuai Yuan^{cd} and Le Yu*^{bc}

^aCollege of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China

^bBeijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China.

E-mail: yule@mail.buct.edu.cn

^cShanghai University (Zhejiang Jiaxing) Emerging Industries Institute, Building 16, No. 906 Yatai Road, Nanhu District, Zhejiang, 314006, P. R. China.

^dResearch Center of Nanoscience and Nanotechnology, Shanghai University, Shanghai 200444, P. R. China.

Fig. S1 FESEM and TEM images of Co-glycerate solid spheres.

Fig. S2 XRD pattern of Co-glycerate solid spheres.

Fig. S3 Low-magnification FESEM image of Co-Mn mixed oxide hollow spheres precursor after hydrothermal process in KMnO₄ solution for 1 h.

Fig. S4 XRD patterns of double-shelled Co-Mn mixed oxide hollow spheres after hydrothermal process in KMnO₄ solution for 1 h and the corresponding crystalline Co-Mn-DHS product after calcination treatment in air at 350 °C.

Fig. S5 EDX spectrum of crystalline Co-Mn-DHS sample.

Fig. S6 (a) HAADF-STEM image and (b-d) elemental mapping data of Co-Mn-DHSs.

Fig. S7 XPS spectra of (a) Co 2p and (b) Mn 2p for crystalline Co-Mn-DHS sample.

The Co 2p spectrum could be fitted into two spin-orbit doublets and two shakeup satellites by using a Gaussian fitting method. The fitting peaks at around 779.8 and 795.3 eV belong to Co³⁺, while the other two peaks at 781.2 and 797.1 eV can be ascribed to Co²⁺. As for the Mn 2p spectrum, there are two main spin-orbit peaks located at 642.1 eV $(2p_{3/2})$ and 653.8 eV $(2p_{1/2})$, revealing the presence of both Mn²⁺ and Mn³⁺.

Fig. S8 N₂ adsorption-desorption isotherm at 77 K of crystalline Co-Mn-DHS sample.

Fig. S9 XRD pattern of Co-Mn mixed oxide hollow spheres after hydrothermal process in KMnO₄ solution for 10 min.

Fig. S10 FTIR spectra of Co-glycerate and Co-Mn mixed oxide samples obtained after hydrothermal process in KMnO₄ solution for 10 min and 60min.

Fig. S11 FESEM and TEM images of Mn-glycerate solid spheres.

Fig. S12 (a) CV curve at the sweep rate of 10 mV s⁻¹ and the red region corresponding to the capacitive contribution to the total current; (b) capacitive contribution at different sweep rates for the Co-Mn-DHS electrode.

Fig. S13 (a) TEM image of Co-Mn-SHS sample. Electrochemical evaluations of the Co-Mn-SHS electrode: (b) CV curves; (c) discharge voltage profiles at different current densities; (d) specific capacitance as a function of current density.

Fig. S14 (a) FESEM image, (b-c) TEM images, (d) N₂ adsorption-desorption isotherm, and (e) the corresponding pore size distribution of CMK-3 sample.

Fig. S15 (a) CV curve and (b) charge/discharge voltage profile of CMK-3 at a current density of 2 A g^{-1} in KOH solution (2.0 M).

Fig. S16 Charge/discharge voltage profiles of Co-Mn-DHS//CMK-3 HSC at various current densities.

Fig. S17 Ragone plot of Co-Mn-DHS//CMK-3 HSC device.

HSC device	Working potential (V)	Energy density (Wh kg ⁻¹)	Power density (W kg ⁻¹)	Reference
Co-Mn-DHS//CMK-3	1.6	33.8 20.5	1602 16020	This work
NiCo ₂ O ₄ /NiO/Co ₃ O ₄ // active carbon (AC)	1.6	43.02	820.29	<i>Chem. Eng. J.</i> , 2019, 368 , 51-60.
RGO/Mn ₃ O ₄ //RGO	1.6	14.3	21300	<i>Adv. Funct.</i> <i>Mater.</i> , 2018, 28 , 1707247
NiCo ₂ O ₄ @CNT/CNT/ /treated carbon cloth	1.6	27.6 7.11	550 2860	<i>Adv. Funct.</i> <i>Mater.</i> , 2017, 27 , 1702160
NiCo ₂ O ₄ //AC	1.4	24.5 15.78	175 1385	<i>Electrochim. Acta</i> , 2019, 299 , 509- 517
NiCo ₂ O ₄ - CNT@DNA//AC	1.5	69.7 52.2	373.9 12046.2	<i>Nano Energy</i> , 2019, 56 , 751-758
Mn-Co//AC	1.8	45.8	300	<i>Electrochim. Acta</i> , 2018, 289 , 72-81
MnCo- LDH@Ni(OH) ₂ //AC	1.5	47.9	750	<i>J. Mater. Chem.</i> <i>A,</i> 2017, 5 , 1043- 1049.
NiCo ₂ S ₄ @Ni ₃ V ₂ O ₈ //A C	1.6	42.7	200	<i>J. Mater. Chem.</i> <i>A</i> , 2016, 4 , 5669- 5677

 Table S1 Comparison of electrochemical performance of various Mn/Co-based HSC devices.