Supporting Information

Cryptomelane K_{1.33}Mn₈O₁₆ as a Cathode for Rechargeable Aqueous Zinc-ion Batteries

Krishnakanth Sada, Baskar Senthilkumar and Prabeer Barpanda*

Faraday Materials Laboratory, Materials Research Centre, Indian Institute of Science,

Bangalore, 560012, India

* prabeer@.iisc.ac.in, Phone: +91-08-2293-2783; Fax No: +91-80-2360-7316

Crystallographic information

Lattice parameters from the Rietveld refinement of the $K_{1,33}Mn_8O_{16}$ (*I*4/*m* space group)

a = 9.8633(11) Å c = 2.86514(28) Å Volume = 278.73(8) Å³

Symmetry = Tetragonal

Symmetry space group name H-M = "I4/m"

Atoms	X	У	Z	Occ.	U _{iso}	Wykoff position
K1	0.0	0.0	0.41979	0.38431	0.06907	4e
Mn1	0.35006	0.16685	0.0	0.96531	0.00139	8h
01	0.15444	0.20391	0.0	1.00045	0.01327	8h
02	0.54298	0.16692	0.0	0.91304	0.03215	8h

Table S1: Atomic positions of the K_{1.33}Mn₈O₁₆.

Table S2: The area ratio of peaks Mn $2p_{3/2}$ and $2p_{1/2}$.

S.No			Area	Ratio
1	Pristine	2p _{1/2}	272.4	1.96
		2p _{3/2}	535.7	
2	1 st discharge	2p _{1/2}	381.7	2.08
		2p _{3/2}	796.7	
3	1 st charge	2p _{1/2}	1068.0	1.99
		2p _{3/2}	2130.3	
4	15 th discharge	2p _{1/2}	1450.0	1.92
		2p _{3/2}	2797.0	

	Peak-Position (20)	d-spacing (Å)	Counts	Ratio
1 st charge	12.96	6.80	3637	
	18.26	4.85	3694	0.985
1st discharge	12.76	6.93	4402	
	18.48	4.79	2026	2.172
15 th charge	12.95	6.82	3045	
	18.24	4.83	3250	0.9369
15 th discharge	12.52	7.06	6768	
	18.26	4.85	2809	2.409

Table S3: Comparison of the peak positions at $(2\theta = 12.9 \text{ and } 18.2)$ showing shift in the ratio.

Table S4: Comparison of prominent studies on α -MnO₂ cathode still date.

SI.	Active	Discharge	Morphology	Electrolyte	Capacity	Refere
No	Material	product			(mA h g ⁻¹)	nce
1	α -MnO ₂	$ZnSO_4[Zn(OH_2)_3]$	Nanofibers	ZnSO ₄ and	(C/5)	1
		. xH ₂ O, MnOOH		MnSO ₄	285	
2	α -MnO ₂	ZnMn ₂ O ₄ and	MnO ₂	ZnSO ₄ and	(0.3C)	2
		MnOOH	deposited on	MnSO ₄	290	
			CFP			
3	α -MnO ₂	ZnMn ₂ O ₄	Powder	ZnSO ₄ or	(0.5C)	3
				$Zn(NO_3)_2$	210	
4	α -MnO ₂	Zn- birnessite	Nanorods	1M ZnSO ₄	(C/20)	4
					205	
5	α -MnO ₂	ZnMn ₂ O ₄	Nanorods	ZnSO ₄	233	5
6	KMn ₈ O ₁₆	ZnK _{1-x} Mn ₈ O ₁₆	Nanorods	ZnSO ₄ and	(1C) 77	6
				K_2SO_4		
7	K _{1.33} Mn ₈ O ₁₆	Zn- birnessite	Nano	ZnSO ₄	(C/10)	This
			particles	and	312	work
				MnSO ₄		

Figure S1: EDS and elemental mapping of the $K_{1.33}Mn_8O_{16}$ showing uniform distribution of constituent elements.

Figure S2: Galvanostatic charge/ discharge (GCD) cycles of $K_{1.33}Mn_8O_{16}$ in 2M K_2SO_4 electrolyte. (Inset) Schematic presentation of the cell assembly.

Figure S3: Galvanostatic charge/ discharge (GCD) cycles of carbon paper without active material in $2M ZnSO_4$ in $0.1M MnSO_4$ additive electrolyte. (Inset) Schematic presentation of the cell assembly.

Figure S4: Cyclic voltammetry (CV) curves recorded in the potential window of 1-1.8 V at a scan rate of 0.1 mV/s.

Figure S5: Cycling stability for 130 cycles at the current rate of C/2.

Figure S6: The pouch cell components and different stages of the assembly. The OCV of the two cell is 2.71 V. The assembled pouch cell was tested successfully to light a red LED.

Figure S7: Ex situ XRD patterns of pristine cathode at different states of charge/discharge. During discharge and charge segments, structural transition (phase transformation) occurred after 1.26 V and 1.51 V respectively.

Figure S8: Comparative EDS spectra of pristine, 1st discharge and 1st charge electrodes.

Figure S9: SEM images of the electrodes after (a) discharge and (b) charge showing the particles integrity. There is no significant morphological change upon battery cycling.

Figure S10: TEM analysis of 15th discharged electrode. Energy-dispersive X-ray microanalysis (EDS) and elemental mapping representing the particle showing the presence of the K-ion in the structure and uniform distribution of the all elements in the particles. Further, it confirmed integrity of the particles upon the multiple (dis)charge cycles.

Figure S11: Elemental mapping of the discharged electrode.

Figure S12: Elemental mapping of the charged electrode.

Figure S13: Potentiostatic intermittent titration (PITT) curve during the 1st discharge revealing the phase transformation with signature bell shape curve.

References:

- H. Pan, Y. Shao, P. Yan, Y. Cheng, K. S. Han, Z. Nie, C. Wang, J. Yang, X. Li and P. Bhattacharya, *Nat. Energy*, 2016, 1, 16039.
- W. Sun, F. Wang, S. Hou, C. Yang, X. Fan, Z. Ma, T. Gao, F. Han, R. Hu and M. Zhu, J. Am. Chem. Soc., 2017, 139, 9775.
- 3. C. Xu, B. Li, H. Du and F. Kang, Angew. Chem. Int. Ed., 2012, 124, 957.
- B. Lee, C. S. Yoon, H. R. Lee, K. Y. Chung, B. W. Cho and S. H. Oh, *Sci. Rep.*, 2014, 4, 6066.
- M. H. Alfaruqi, J. Gim, S. Kim, J. Song, J. Jo, S. Kim, V. Mathew and J. Kim, *J. Power Sources*, 2015, 288, 320.
- I. Cui, X. Wu, S. Yang, C. Li, F. Tang, J. Chen, Y. Chen, Y. Xiang, X. Wu and Z. He, Front. Chem., 2018, 6, 352.