Supporting information

Ca²⁺ doped ultrathin cobalt hydroxyloxides from coordination

polymers as efficient electrocatalysts for water oxidations

Panpan Su^a, Shuangshuang Ma^{a,b}, Wenjuan Huang^{a,c}, Yash Boyjoo^a, Shiyang Bai^{b*}, and Jian Liu^{a,d,*}

^aState Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China, E-mail: jianliu@dicp.ac.cn

^bDepartment of Chemistry and Chemical Engineering, Beijing University of Technology, 100 PingLeYuan, Chaoyang District, Beijing 100124, China

^cCollege of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 200090, China

^dDICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey, UK, E-mail: jian.liu@surrey.ac.uk

Table S1 Electrochemical impedance spectroscopy	(EIS) fitting results.	Rs: electrolyte resistance,
R _{CT} : charge-transfer resistance.		

Catalysts	R _s /ohms	R _{CT} /ohms
Co-CPs	8.7	3.8
Co _{0.91} Ca _{0.09} -CPs	6.9	3.7
Co _{0.89} Ca _{0.11} -CPs	7.3	2.5
Co _{0.83} Ca _{0.17} -CPs	7.5	2.9

Table S2 Comparison of the OER performance of $Co_{0.89}Ca_{0.11}$ -CPs with selected cobalt based catalysts from the literature. GC: glass carbon; NF: nickel foam.

Catalyst	Substrate	Electrolyte	η@10 mA cm ⁻² (V)	Tafel slopes (mV dec ⁻¹)	References
Co _{0.89} Ca _{0.11} -CPs	GC	1.0 M KOH	0.37	58.8	This work
2D Co-ZIF-9	GC	1.0 M KOH	0.38	55	Adv. Sci. 2018, 5,
					1801029
СоР	NF	1.0 M KOH	0.39	65	Adv. Funct. Mater.
					2015, 25, 7337
CoOx-ZIF	GC	1.0 M KOH	0.32	70.3	Adv. Funct. Mater.
ZIF-67			0.40	108.8	2017, 27, 1702546
Co(OH)2@NCNTs	NF	1.0 M KOH	0.27	72	Nano Energy, 2018,
					47, 96
Co ₃ O ₄ film	Au	1.0 M KOH	0.39	61	Electrochimica Acta
					2014, 140, 359.
Co@C-MWCNTs	GC	1.0 M KOH	0.32	67	J. Mater. Chem. A,
Co ₃ O ₄ @C-			0.39	62	2015, 3, 17392
MWCNTs					
Co ₃ O ₄ /CNW-C	GC	1.0 M KOH	0.41	54	J. Mater. Chem. A,
					2015, 3, 11615

Fig. S1 SEM images of Co-CPs (a), $Co_{0.91}Ca_{0.09}$ - CPs (b), $Co_{0.89}Ca_{0.11}$ - CPs (c), and $Co_{0.83}Ca_{0.17}$ - CPs (d).

Fig. S2 TEM images of Co-CPs (a), $Co_{0.91}Ca_{0.09}$ -CPs (b), $Co_{0.89}Ca_{0.11}$ -CPs (c) and $Co_{0.83}Ca_{0.17}$ -CPs (d).

Fig. S3 HRSEM images of (a) Co-CPs, (b) $Co_{0.91}Ca_{0.09}$ -CPs, (c) $Co_{0.89}Ca_{0.11}$ -CPs and (d) $Co_{0.83}Ca_{0.17}$ -CPs.

Fig. S4 XRD patterns of Co-CPs, Co_xCa_y-CPs and Ca-CPs.

Fig. S5 Cyclic voltammetry (CV) curves without IR compensation during the potential range of 0.85V to 1.65V vs RHE in 1M KOH electrolyte for the catalysts: (a) Co-CPs, (b) $Co_{0.91}Ca_{0.09}$ -CPs, (c) $Co_{0.89}Ca_{0.11}$ -CPs and (d) $Co_{0.83}Ca_{0.17}$ -CPs.

Fig. S6 The first CV curves for Co-CPs and Co_xCa_y-CPs in 1 M KOH electrolyte.

Fig. S7 The stable CV curves for Co-CPs and Co_xCa_y-CPs in 1 M KOH electrolyte.

Fig. S8 EIS of anodic oxidized products of Co-CPs and Co_xCa_y-CPs measured at a constant potential of 1.55 V versus RHE.

Fig. S9 LSV polarization curves of $Co_{0.89}Ca_{0.11}$ -CPs before and after cycling for 1000 cycles.

Fig. S10 EDS result of Co_{0.89}Ca_{0.11}-CPs before OER stability test.

Element	Wt%	At%
CK.	09.37.	23.29.
OK.	20.30.	37.88.
SK.	00.71.	00.66
KK.	06.55.	05.00
CaK.	05.13.	03.82
CoKo	57.94.	29.35.
Matrix	Correction	ZAF

Fig. S11 EDS result of Co_{0.89}Ca_{0.11}-CPs after OER stability test.

Fig. S12 TEM images of anodic oxidized products of Co-CPs (a), $Co_{0.91}Ca_{0.09}$ -CPs (b), $Co_{0.89}Ca_{0.11}$ -CPs (c) and $Co_{0.83}Ca_{0.17}$ -CPs (d) in 1.0 M KOH aqueous electrolyte.

Fig. S13 HRTEM image of anodic oxidized product of Co-CPs after OER.

Fig. S14 XPS spectra of Co-2p of Co-CPs and Co_xCa_y-CPs.

Fig. S15 XPS spectra of Co-2p for hydrolyzed samples of Co-CPs and Co_xCa_v-CPs in 1 M KOH.

Fig. S16 Raman spectra of the anodic oxidized products of Co-CPs and $\mathrm{Co}_x\mathrm{Ca}_y$ -CPs after OER.