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SC working electrode preparation process and performance calculation equations 

For SCs, the working electrodes were prepared by mixing 75 wt% active materials, 20 wt% 

CB conductive additive and 5 wt% polytetrafluoro ethylene binder. Then the mixture was 

pressed onto a stainless-steel mesh or nickel foam and dried at 60 °C for 24 h.

The specific gravimetric capacitance of a single electrode measured in a three-electrode system, 

Cm (in F/g), was obtained according to the following equation

𝐶𝑚 = 𝐼 △ 𝑡/𝑚𝑉 (1)

Cm value derived from GCD in a two-electrode analysis was calculated from equation 

𝐶𝑚 = 4𝐼 △ 𝑡/2𝑚𝑉 (2)

The specific areal capacitance Cs (in mF/cm2) derived from GCD in a two-electrode analysis 

was calculated from equation 
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𝐶𝑠 = 4𝐼 △ 𝑡/2𝑆𝑉 (3)

The energy and power density, E (Wh/Kg) and P (kW/Kg), of a SC cell were calculated from 

equations 

𝐸 =   0.5𝐶 𝑉2/4 × 3.6 (4)

𝑃 =   3.6𝐸 / △ 𝑡 (5)

where, i is the instantaneous current response, V is the potential window, Δt is the discharge 

time, m is the mass and S is the geographic area of active materials on a single electrode.

Fig. S1: FE-SEM images of the sample CNUY-600. 
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Fig. S2: TEM images of the sample CNUY-600.

Fig. S3 The deconvoluted C 1s (A), N 1s (B), O 1s (C) spectra of sample CNUY-600H; The 

deconvoluted C 1s (D), N 1s (E), O 1s (F) spectra of CNUY-600.
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Fig. S4. Raman spectra of CNUY-600 (A), CNUY-600H (B) and CNUY-1100 (C) through 

Gaussian fitting. The IG/ID ratio of them is 1.03, 1.17 and 0.93, respectively. 

Fig. S5. XRD patterns of CNUY-600 and CNUY-600H.
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Fig. S6: The Nyquist plot (A) and Bode plots (B) of CNUY-600H measured in a three-

electrode system with 1 M H2SO4 as the aqueous electrolyte. 

Fig. S7: The electrochemical performance of electrode CNUY-600 measured in a three-

electrode system with 1 M H2SO4 as the aqueous electrolyte: CV curves at scan rates ranging 

from 5 mV/s to 200 mV/s (A), GCD curves at current densities from 0.25 to 100 A/g (B, C), 

Nyquist plot (D) and Bode plots (E).
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Fig. S8: The electrochemical performance of electrode CNUY-600 measured in a symmetric 

cell with 1 M H2SO4 aqueous electrolyte: GCD curves at different current densities (A), 

Nyquist plot (B). 

Fig. S9: The equivalent circuit used for fitting the Nyquist and Bode plots. 
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Fig. S10: The electrochemical performance of the electrode CNUY-600H measured in a 

symmetric cell with 1 M LiCl as the aqueous electrolyte: GCD curves at current densities 

ranging from 0.2 to 10 A/g (A), CV curves at scan rates from 5 to 200 mV/s (B), rate capability 

plot (C), Nyquist plot (D).
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Fig. S11: The electrochemical performance of electrode CNUY-600H measured in a symmetric 

cell with 2 M KOH aqueous electrolyte: GCD curves at current densities ranging from 0.2 to 

30 A/g (A), CV curves at scan rates from 5 to 1000 mV/s (B), rate capability plot (C), Nyquist 

plot (D).
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Fig. S12: Cycling performance of electrode CNUY-600H measured in a symmetric 

supercapacitor cell at a current density of 5A/g within 1 M LiCl and 2M KOH aqueous 

electrolyte.
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Fig. S13: GCD curves of electrode CNUY-600H with a mass loading of 4 mg/cm2 (A), 8 

mg/cm2 (B) and 20 mg/cm2 (C) at different current densities measured in a symmetric 

supercapacitor cell within 1 M H2SO4 aqueous electrolyte. 
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Fig. S14: Nyquist plot of electrode CNUY-600H with a mass loading of 20 mg/cm2 measured 

in a symmetric cell within 1 M H2SO4 aqueous electrolyte.
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Fig. S15: Cycling performance of electrode CNUY-600H with a mass loading of 8 mg/cm2 (A) 

and 12 mg/cm2 (B) measured in a symmetric supercapacitor cell within 1 M H2SO4 aqueous 

electrolyte. 

8 mg/cm2: ~78 % of the initial areal capacitance value was maintained after 90000 cycles at a 

current density of 30 mA/cm2

12 mg/cm2: ~81 % and ~75% of the initial areal capacitance value was maintained after 50000 

and 90000 cycles at a current density of 30 mA/cm2 respectively.
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Fig. S16: Tafel plots of the samples used in this work. 
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Fig. S17: TEM images of sample CNUY-1100. 
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Fig. S18: XPS spectrum (A) and Raman spectra (B) of CNUY-1100

Fig. S19: The deconvoluted C 1s (A), N 1s (B), O 1s (C) spectra of sample CNUY-1100.
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Fig. S20: CV curves of CNUY-600 (A), CNUY-600H (B) and CNUY-1100 (C) catalysts; their 

capacitive current measured at ~1.2 V vs. RHE plotted as a function of scan rate (D).

Electrochemically active surface area (ECSA) of catalyst plays a crucial role in the reactions. 

To calculate the ECSA of CNUYs, we conducted CV at different scan rates with a potential 

window of 1.13~1.23 V vs RHE, where there is no Faradic current. The ECSA was estimated 

from the as obtained double-layer capacitance (𝐶𝑑𝑙): 

𝐸𝐶𝑆𝐴 = 𝐶𝑑𝑙/𝐶𝑠 (6)

𝐶𝑠 is the specific capacitance value for a flat standard with 1 cm2 of real surface area.
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The ECSAs of CNUYs were calculated to compare the active sites, as shown in Fig 6B. ECSA 

of CNUY-1100 is significantly larger than CNUY-600 but smaller than CNUY-600H. This is 

because the high temperature (1100°C) destroyed the pore structure to some extent (as shown 

in the TEM images in Fig. S13), leading to a smaller SSA thus smaller ECSA.

Fig. S21: ORR performance comparison of CNUYs: (A) current densities corresponding to 

certain potential and (B) potential corresponding to different current densities. 

Table. S1 N 1s fitting results of CNUY-600 and CNUY-600H. 

Nitrogen

Sample Pyrrolic N Pyridinic N Quaternary N

CNUY-600 53.94 % 22.03 % 24.03 %

CNUY-600H 45.87 % 19.07 % 35.05 %
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Table. S2 Specific capacitance values (in F/g) of electrodes CNUY-600 and CNUY-600H 

measured in a three-electrode system with 1 M H2SO4 aqueous electrolyte

Current density (A/g) 0.25 0.5 1 2 5 10 20 30 50 80 100

CNUY-600 295 255 244 237 220 200 184 161 134 97 80

CNUY-600H 426 378 346 325 309 277 262 254 231 185 177

Table. S3 Electrochemical performance of electrode CNUY-600 measured in a two-electrode 

system with 1 M H2SO4 as the aqueous electrolyte

Current density (A/g) 0.2 0.5 1 2 5 10 15 20

Cm (F/g) 196 192 187 175 146 123 97 80

Energy density (Wh/Kg) 11.5 11.3 10.9 10.3 8.6 7.2 6.8 4.7

Power density (W/Kg) 162 325 643 1301 3259 6480 11657 13015

Table. S4 Electrochemical performance of electrode CNUY-600H measured in a two-electrode 

system with 1 M H2SO4 as the aqueous electrolyte

Current density (A/g) 0.2 0.5 1 2 5 10 15 20

Cm (F/g) 253 234 228 216 200 185 167 148

Energy density (Wh/Kg) 14.9 13.7 13.4 12.7 11.7 10.9 9.8 8.7

Power density (W/Kg) 131 325 652 1306 3240 6540 9800 13050
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Table. S5 Electrochemical performance of electrode CNUY-600H in a symmetric cell with 

1M LiCl as the aqueous electrolyte

Current density (A/g) 0.5 1 2 5 10

Cm (F/g) 206 174 156 135 118

Energy density (Wh/Kg) 20.7 17.5 15.7 13.6 11.9

Power density (W/Kg) 426 851 1713 4451 9520

Table. S6 Specific capacitance values of electrode CNUY-600H in a symmetric cell with 2 M 

KOH as the aqueous electrolyte

Current density (A/g) 0.2 0.5 1 2 5 10 20 30 40 50

Cm (F/g) 176 176 175 168 160 140 128 108 96 80

Table. S7 Areal capacitance values (mF/cm2) of electrode CNUY-600H of different mass 

loadings measured in a two-electrode system with 1 M H2SO4 as the aqueous electrolyte.

Current density (mA/cm2) 0.5 1 2 5 10 15 20 30 40 50

1 (mg/cm2) 243 228 223 210 200 185 162 136 116 74

4 (mg/cm2) 854 831 800 724 647 600 554 462 370 308

8 (mg/cm2) 1775 1713 1661 1523 1416 1339 1231 1150 985 923

12 (mg/cm2) 2518 2465 2338 2246 2000 1846 1723 1569 1354 1128

20 (mg/cm2) 3988 3877 3662 3246 2779 2308 1908 1477 985 693
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Table. S8 Comparison of samples studied in this work. 

CNUY-600 CNUY-600H CNUY-1100
12.36 
at% N

22.39 
at% O

3.40 
at% N 

7.43 
at% O

1.41 
at% N

6.66 
at% O

Specific capacitance (F/g, 0.25 A/g) 295 426 93.3

Specific capacitance (F/g, 100 A/g) 80 177 -

Onset potential (V vs. RHE) 0.82 0.88 0.90

Half-wave potential (V vs. RHE) 0.72 0.77 0.77

Limiting diffusion current (mA/cm2) 4.59 4.75 5.44

Table. S9 Comparison of cellulose-derived carbon materials as symmetric SC electrodes

Precursor Specific 
capacitance 

(F/g)

Measurement 
conditions

Electrolyte Ref.

Cellulose filter paper 120 1 A/g 2 M KOH 1

Bagasse-derived 
cellulose

142 0.5 A/g KOH/PVA 
Gel

2

Cellulose acetate 160 0.5 A/g 6 M KOH 3

Microcrystal cellulose 194 0.2 A/g 1 M NaCl 4

Paper cellulose 200 20 μA/cm2 1 M H2SO4
5

Nanofibrillated cellulose 81 1 mV/s Solid 
electrolyte 

6

Cellulose nanofiber 207 5 mV/s H2SO4/PVA 7

Microcrystal cellulose 248 0.1 A/g 1 M H2SO4
8

Cellulose/MnO2 306 10 mV/s 1 M Na2SO4 9

Microcrystal cellulose 253 0.2 A/g 1 M H2SO4 This work
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