Microcrystalline Cellulose-derived Porous Carbons with Defective Sites for Electrochemical Applications

Hao Lu,[†] Linzhou Zhuang,[†] Rohit Ranganathan Gaddam, Xiaoming Sun, Changlong Xiao,

Timothy Duignan, Zhonghua Zhu and X. S. Zhao*

School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.

*Correspondence to george.zhao@uq.edu.au.

[†] These authors contributed equally to this work

SC working electrode preparation process and performance calculation equations

For SCs, the working electrodes were prepared by mixing 75 wt% active materials, 20 wt% CB conductive additive and 5 wt% polytetrafluoro ethylene binder. Then the mixture was pressed onto a stainless-steel mesh or nickel foam and dried at 60 °C for 24 h.

The specific gravimetric capacitance of a single electrode measured in a three-electrode system, C_m (in F/g), was obtained according to the following equation

$$C_m = I \Delta t / mV \tag{1}$$

 C_m value derived from GCD in a two-electrode analysis was calculated from equation

$$C_m = 4I \Delta t / 2mV \tag{2}$$

The specific areal capacitance C_s (in mF/cm²) derived from GCD in a two-electrode analysis was calculated from equation

$$C_s = 4I \Delta t/2SV$$

The energy and power density, E (Wh/Kg) and P (kW/Kg), of a SC cell were calculated from equations

$$E = 0.5C V^2 / 4 \times 3.6 \tag{4}$$

$$P = 3.6E / \Delta t \tag{5}$$

where, *i* is the instantaneous current response, *V* is the potential window, Δt is the discharge time, *m* is the mass and *S* is the geographic area of active materials on a single electrode.

Fig. S1: FE-SEM images of the sample CNUY-600.

Fig. S2: TEM images of the sample CNUY-600.

Fig. S3 The deconvoluted C 1s (A), N 1s (B), O 1s (C) spectra of sample CNUY-600H; The deconvoluted C 1s (D), N 1s (E), O 1s (F) spectra of CNUY-600.

Fig. S4. Raman spectra of CNUY-600 (A), CNUY-600H (B) and CNUY-1100 (C) through Gaussian fitting. The I_G/I_D ratio of them is 1.03, 1.17 and 0.93, respectively.

Fig. S5. XRD patterns of CNUY-600 and CNUY-600H.

Fig. S6: The Nyquist plot (A) and Bode plots (B) of CNUY-600H measured in a threeelectrode system with 1 M H_2SO_4 as the aqueous electrolyte.

Fig. S7: The electrochemical performance of electrode CNUY-600 measured in a threeelectrode system with 1 M H_2SO_4 as the aqueous electrolyte: CV curves at scan rates ranging from 5 mV/s to 200 mV/s (A), GCD curves at current densities from 0.25 to 100 A/g (B, C), Nyquist plot (D) and Bode plots (E).

Fig. S8: The electrochemical performance of electrode CNUY-600 measured in a symmetric cell with 1 M H₂SO₄ aqueous electrolyte: GCD curves at different current densities (A), Nyquist plot (B).

Fig. S9: The equivalent circuit used for fitting the Nyquist and Bode plots.

Fig. S10: The electrochemical performance of the electrode CNUY-600H measured in a symmetric cell with 1 M LiCl as the aqueous electrolyte: GCD curves at current densities ranging from 0.2 to 10 A/g (A), CV curves at scan rates from 5 to 200 mV/s (B), rate capability plot (C), Nyquist plot (D).

Fig. S11: The electrochemical performance of electrode CNUY-600H measured in a symmetric cell with 2 M KOH aqueous electrolyte: GCD curves at current densities ranging from 0.2 to 30 A/g (A), CV curves at scan rates from 5 to 1000 mV/s (B), rate capability plot (C), Nyquist plot (D).

Fig. S12: Cycling performance of electrode CNUY-600H measured in a symmetric supercapacitor cell at a current density of 5A/g within 1 M LiCl and 2M KOH aqueous electrolyte.

Fig. S13: GCD curves of electrode CNUY-600H with a mass loading of 4 mg/cm² (A), 8 mg/cm² (B) and 20 mg/cm² (C) at different current densities measured in a symmetric supercapacitor cell within 1 M H_2SO_4 aqueous electrolyte.

Fig. S14: Nyquist plot of electrode CNUY-600H with a mass loading of 20 mg/cm² measured in a symmetric cell within 1 M H_2SO_4 aqueous electrolyte.

Fig. S15: Cycling performance of electrode CNUY-600H with a mass loading of 8 mg/cm² (A) and 12 mg/cm² (B) measured in a symmetric supercapacitor cell within 1 M H_2SO_4 aqueous electrolyte.

 8 mg/cm^2 : ~78 % of the initial areal capacitance value was maintained after 90000 cycles at a current density of 30 mA/cm²

 12 mg/cm^2 : ~81 % and ~75% of the initial areal capacitance value was maintained after 50000 and 90000 cycles at a current density of 30 mA/cm² respectively.

Fig. S16: Tafel plots of the samples used in this work.

Fig. S17: TEM images of sample CNUY-1100.

Fig. S18: XPS spectrum (A) and Raman spectra (B) of CNUY-1100

Fig. S19: The deconvoluted C 1s (A), N 1s (B), O 1s (C) spectra of sample CNUY-1100.

Fig. S20: CV curves of CNUY-600 (A), CNUY-600H (B) and CNUY-1100 (C) catalysts; their capacitive current measured at ~1.2 V vs. RHE plotted as a function of scan rate (D).

Electrochemically active surface area (ECSA) of catalyst plays a crucial role in the reactions. To calculate the ECSA of CNUYs, we conducted CV at different scan rates with a potential window of $1.13\sim1.23$ V vs RHE, where there is no Faradic current. The ECSA was estimated from the as obtained double-layer capacitance (C_{dl}):

$$ECSA = Cdl/Cs \tag{6}$$

 C_s is the specific capacitance value for a flat standard with 1 cm² of real surface area.

The ECSAs of CNUYs were calculated to compare the active sites, as shown in Fig 6B. ECSA of CNUY-1100 is significantly larger than CNUY-600 but smaller than CNUY-600H. This is because the high temperature (1100°C) destroyed the pore structure to some extent (as shown in the TEM images in Fig. S13), leading to a smaller SSA thus smaller ECSA.

Fig. S21: ORR performance comparison of CNUYs: (A) current densities corresponding to certain potential and (B) potential corresponding to different current densities.

		Nitrogen	
Sample	Pyrrolic N	Pyridinic N	Quaternary N
CNUY-600	53.94 %	22.03 %	24.03 %
CNUY-600H	45.87 %	19.07 %	35.05 %

Table. S1 N 1s fitting results of CNUY-600 and CNUY-600H.

Table. S2 Specific capacitance values (in F/g) of electrodes CNUY-600 and CNUY-600H measured in a three-electrode system with $1 \text{ M H}_2\text{SO}_4$ aqueous electrolyte

Current density (A/g)	0.25	0.5	1	2	5	10	20	30	50	80	100
CNUY-600	295	255	244	237	220	200	184	161	134	97	80
CNUY-600H	426	378	346	325	309	277	262	254	231	185	177

Table. S3 Electrochemical performance of electrode CNUY-600 measured in a two-electrode system with 1 M H_2SO_4 as the aqueous electrolyte

Current density (A/g)	0.2	0.5	1	2	5	10	15	20
C _m (F/g)	196	192	187	175	146	123	97	80
Energy density (Wh/Kg)	11.5	11.3	10.9	10.3	8.6	7.2	6.8	4.7
Power density (W/Kg)	162	325	643	1301	3259	6480	11657	13015

Table. S4 Electrochemical performance of electrode CNUY-600H measured in a two-electrode system with 1 M H_2SO_4 as the aqueous electrolyte

Current density (A/g)	0.2	0.5	1	2	5	10	15	20
C _m (F/g)	253	234	228	216	200	185	167	148
Energy density (Wh/Kg)	14.9	13.7	13.4	12.7	11.7	10.9	9.8	8.7
Power density (W/Kg)	131	325	652	1306	3240	6540	9800	13050

Table. S5 Electrochemical performance of electrode CNUY-600H in a symmetric cell with1M LiCl as the aqueous electrolyte

Current density (A/g)	0.5	1	2	5	10
C _m (F/g)	206	174	156	135	118
Energy density (Wh/Kg)	20.7	17.5	15.7	13.6	11.9
Power density (W/Kg)	426	851	1713	4451	9520

Table. S6 Specific capacitance values of electrode CNUY-600H in a symmetric cell with 2 M KOH as the aqueous electrolyte

Current density (A/g)	0.2	0.5	1	2	5	10	20	30	40	50
C _m (F/g)	176	176	175	168	160	140	128	108	96	80

Table. S7 Areal capacitance values (mF/cm²) of electrode CNUY-600H of different mass loadings measured in a two-electrode system with 1 M H_2SO_4 as the aqueous electrolyte.

0.5	1	2	5	10	15	20	30	40	50
243	228	223	210	200	185	162	136	116	74
854	831	800	724	647	600	554	462	370	308
1775	1713	1661	1523	1416	1339	1231	1150	985	923
2518	2465	2338	2246	2000	1846	1723	1569	1354	1128
3988	3877	3662	3246	2779	2308	1908	1477	985	693
	0.5 243 854 1775 2518 3988	0.5 1 243 228 854 831 1775 1713 2518 2465 3988 3877	0.5 1 2 243 228 223 854 831 800 1775 1713 1661 2518 2465 2338 3988 3877 3662	0.5125243228223210854831800724177517131661152325182465233822463988387736623246	0.5 1 2 5 10 243 228 223 210 200 854 831 800 724 647 1775 1713 1661 1523 1416 2518 2465 2338 2246 2000 3988 3877 3662 3246 2779	0.51251015243228223210200185854831800724647600177517131661152314161339251824652338224620001846398838773662324627792308	0.5125101520243228223210200185162854831800724647600554177517131661152314161339123125182465233822462000184617233988387736623246277923081908	0.512510152030243228223210200185162136854831800724647600554462177517131661152314161339123111502518246523382246200018461723156939883877366232462779230819081477	0.5 1 2 5 10 15 20 30 40 243 228 223 210 200 185 162 136 116 854 831 800 724 647 600 554 462 370 1775 1713 1661 1523 1416 1339 1231 1150 985 2518 2465 2338 2246 2000 1846 1723 1569 1354 3988 3877 3662 3246 2779 2308 1908 1477 985

	CNUY-600	CNUY-600H	CNUY-1100
	12.36 22.39 at% N at% O	3.40 7.43 at% N at% O	1.41 6.66 at% N at% O
Specific capacitance (F/g, 0.25 A/g)	295	426	93.3
Specific capacitance (F/g, 100 A/g)	80	177	-
Onset potential (V vs. RHE)	0.82	0.88	0.90
Half-wave potential (V vs. RHE)	0.72	0.77	0.77
Limiting diffusion current (mA/cm ²)	4.59	4.75	5.44

Table. S8 Comparison of samples studied in this work.

Table. S9 Comparison of cellulose-derived carbon materials as symmetric SC electrodes

Precursor	Specific capacitance (F/g)	Measurement conditions	Electrolyte	Ref.
Cellulose filter paper	120	1 A/g	2 M KOH	1
Bagasse-derived cellulose	142	0.5 A/g	KOH/PVA Gel	2
Cellulose acetate	160	0.5 A/g	6 M KOH	3
Microcrystal cellulose	194	0.2 A/g	1 M NaCl	4
Paper cellulose	200	$20 \ \mu A/cm^2$	$1 \text{ M H}_2 \text{SO}_4$	5
Nanofibrillated cellulose	81	1 mV/s	Solid electrolyte	6
Cellulose nanofiber	207	5 mV/s	H ₂ SO ₄ /PVA	7
Microcrystal cellulose	248	0.1 A/g	1 M H ₂ SO ₄	8
Cellulose/MnO ₂	306	10 mV/s	1 M Na ₂ SO4	9
Microcrystal cellulose	253	0.2 A/g	1 M H ₂ SO ₄	This work

References

- 1. W. Luo, B. Wang, C. G. Heron, M. J. Allen, J. Morre, C. S. Maier, W. F. Stickle and X. Ji, *Nano letters*, 2014, **14**, 2225-2229.
- 2. P. Hao, Z. Zhao, J. Tian, H. Li, Y. Sang, G. Yu, H. Cai, H. Liu, C. Wong and A. Umar, *Nanoscale*, 2014, **6**, 12120-12129.
- 3. L. Deng, R. J. Young, I. A. Kinloch, A. M. Abdelkader, S. M. Holmes, D. A. De Haro-Del Rio and S. J. Eichhorn, *ACS applied materials & interfaces*, 2013, **5**, 9983-9990.
- 4. C. Wang, X. Wang, H. Lu, H. Li and X. Zhao, *Carbon*, 2018, **140**, 139-147.
- 5. L. Hu, J. W. Choi, Y. Yang, S. Jeong, F. La Mantia, L.-F. Cui and Y. Cui, *Proceedings* of the National Academy of Sciences, 2009, **106**, 21490-21494.
- 6. F. Jiao, J. Edberg, D. Zhao, S. Puzinas, Z. U. Khan, P. Mäkie, A. Naderi, T. Lindström, M. Odén and I. Engquist, *Advanced Sustainable System*, 2018, **2**, 1700121.
- 7. K. Gao, Z. Shao, J. Li, X. Wang, X. Peng, W. Wang and F. Wang, *Journal of Materials Chemistry A*, 2013, 1, 63-67.
- 8. H. Lu, X. Sun, R. R. Gaddam, N. A. Kumar and X. S. Zhao, *Journal of Power Sources*, 2017, **360**, 634-641.
- 9. L.M. Chen, H.Y. Yu, D.C. Wang, T. Yang, J. Yao, K. C. Tam, *ACS Sustainable Chem. Eng*, 2019, **7**, 11823-11831.